Skip to main content

Advertisement

Log in

Recent advances in the molecular biology of metazoan polyamine transport

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Very limited molecular knowledge exists about the identity and protein components of the ubiquitous polyamine transporters found in animal cells. However, a number of reports have been published over the last 5 years on potential candidates for metazoan polyamine permeases. We review the available evidence on these putative polyamine permeases, as well as establish a useful «identikit picture» of the general polyamine transport system, based on its properties as found in a wide spectrum of mammalian cells. Any molecular candidate encoding a putative «general» polyamine permease should fit that provided portrait. The current models proposed for the mechanism of polyamine internalization in mammalian cells are also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The abbreviations used are: PMPP, plasma membrane polyamine permeases; PTS, polyamine transport system; ODC, ornithine decarboxylase; DFMO, 2-difluoromethylornithine; CHO cells, Chinese hamster ovary cells; OAZ, ornithine decarboxylase antizyme; AZIN, antizyme inhibitor; SSAT, spermidine/spermine N 1-acetyltransferase; PSVs, polyamine-sequestering vesicles; RME, receptor-mediated endocytosis; HMA, 5-(N,N-hexamethylene)amiloride; Spd-MANT, N-spermidine-[N 4-(3-aminopropyl)] anthranylamide.

References

  • Adair GM, Siciliano MJ (1985) Linkage of the MBG locus to another functionally hemizygous gene locus (IDH2) on chromosome Z3 in Chinese hamster ovary cells. Mol Cell Biol 5:109–113

    PubMed  CAS  Google Scholar 

  • Aouida M, Ramotar D (2010) A new twist in cellular resistance to the anticancer drug bleomycin-A5. Curr Drug Metab 11:595–602. pii:BSP/CDM/E-Pub/00088

    Article  PubMed  CAS  Google Scholar 

  • Aouida M, Leduc A, Poulin R, Ramotar D (2005) AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J Biol Chem 280:24267–24276. doi:10.1074/jbc.M503071200

    Article  PubMed  CAS  Google Scholar 

  • Aouida M, Poulin R, Ramotar D (2010) The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. J Biol Chem 285:6275–6284. doi:10.1074/jbc.M109.046151

    Article  PubMed  CAS  Google Scholar 

  • Aziz SM, Yatin M, Worthen DR, Lipke DW, Crooks PA (1998) A novel technique for visualizing the intracellular localization and distribution of transported polyamines in cultured pulmonary artery smooth muscle cells. J Pharm Biomed Anal 17:307–320. pii:S0731-7085(98)00016-8

    Article  PubMed  CAS  Google Scholar 

  • Belting M, Havsmark B, Jönsson M, Persson S, Fransson LÅ (1996) Heparan sulphate/heparin glycosaminoglycans with strong affinity for the growth-promoter spermine have high antiproliferative activity. Glycobiology 6:121–129

    Article  PubMed  CAS  Google Scholar 

  • Belting M, Mani K, Jönsson M, Cheng F, Sandgren S, Jonsson S, Ding K, Delcros JG, Fransson L-Å (2003) Glypican-1 is a vehicle for polyamine uptake in mammalian cells. A pivotal role for nitrosothiol-derived nitric oxide. J Biol Chem 278:47181–47189. doi:10.1074/jbc.M308325200

    Article  PubMed  CAS  Google Scholar 

  • Bergeron RJ, Seligsohn HW (1986) Hexahydropyrimidines as masked spermidine vectors in drug delivery. Bioorg Chem 14:345–355

    Article  CAS  Google Scholar 

  • Bergeron RJ, Hawthorne TR, Vinson JRT, Beck DE Jr, Ingeno MJ (1989) Role of the methylene backbone in the antiproliferative activity of polyamine analogues on L1210 cells. Cancer Res 49:2959–2964

    PubMed  CAS  Google Scholar 

  • Blais Y, Zhao C, Huber M, Audette M, Labrie F, Poulin R (1996) Growth-independent induction of spermidine transport by IL-4 and IL-13 in ZR-75-1 human breast cancer cells. Int J Cancer 67:532–538. doi:10.1002/(SICI)1097-0215(19960807)67:4<532:AID-IJC12>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  • Brachet P, Tome D (1992) Putrescine uptake by rabbit intestinal brush-border membrane vesicles. Biochem Int 27:465–475

    PubMed  CAS  Google Scholar 

  • Brachet P, Debbabi H, Tomé D (1995) Transport and steady-state accumulation of putrescine in brush-border membrane vesicles of rabbit small intestine. Am J Physiol 32:G754–G762

    Google Scholar 

  • Burns MR, Carlson CL, Vanderwerf SM, Ziemer JR, Weeks RS, Cai F, Webb HK, Graminski GF (2001) Amino acid/spermine conjugates: polyamine amides as potent spermidine uptake inhibitors. J Med Chem 44:3632–3644. pii:jm0101040

    Article  PubMed  CAS  Google Scholar 

  • Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H (1996) Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem 271:32599–32604

    Article  PubMed  CAS  Google Scholar 

  • Byers TL, Pegg AE (1989) Properties and physiological function of the polyamine transport system. Am J Physiol 257:C545–C553

    PubMed  CAS  Google Scholar 

  • Byers TL, Pegg AE (1990) Regulation of polyamine transport in Chinese hamster ovary cells. J Cell Physiol 143:460–467. doi:10.1002/jcp.1041430309

    Article  PubMed  CAS  Google Scholar 

  • Byers TL, Kameji R, Rannels DE, Pegg AE (1987) Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines. Am J Physiol 252:C663–C669

    PubMed  CAS  Google Scholar 

  • Byers TL, Wechter R, Nuttall ME, Pegg AE (1989) Expression of a human gene for polyamine transport in Chinese-hamster ovary cells. Biochem J 263:745–752

    PubMed  CAS  Google Scholar 

  • Casero RA Jr, Woster PM (2009) Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem 52:4551–4573. doi:10.1021/jm900187v

    Article  PubMed  CAS  Google Scholar 

  • Chaney JE, Kobayashi K, Goto R, Digenis GA (1983) Tumor selective enhancement of radioactivity uptake in mice treated with α-difluoromethylornithine prior to administration of 14C-putrescine. Life Sci 32:1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194. doi:10.1038/35056508

    Article  PubMed  CAS  Google Scholar 

  • Covassin L, Desjardins M, Soulet D, Charest-Gaudreault R, Audette M, Poulin R (2003) Xylylated dimers of putrescine and polyamines: influence of the polyamine backbone on spermidine transport inhibition. Bioorg Med Chem Lett 13:3267–3271. pii:S0960894X03006681

    Article  PubMed  CAS  Google Scholar 

  • Cullis PM, Green RE, Merson-Davies L, Travis N (1999) Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells. Chem Biol 6:717–729. pii:S1074-5521(00)80019-8

    Article  PubMed  CAS  Google Scholar 

  • Daigle ND, Carpentier GA, Frenette-Cotton R, Simard MG, Lefoll MH, Noel M, Caron L, Noel J, Isenring P (2009) Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport. J Cell Physiol 220:680–689. doi:10.1002/jcp.21814

    Article  PubMed  CAS  Google Scholar 

  • De Smedt H, Van den Bosch L, Geuns J, Borghgraef R (1989) Polyamine transport systems in the LLC-PK1 renal epithelial established cell line. Biochim Biophys Acta 1012:171–177. pii:0167-4889(89)90092-X

    Article  PubMed  Google Scholar 

  • Delcros JG, Tomasi S, Duhieu S, Foucault M, Martin B, Le Roch M, Eifler-Lima V, Renault J, Uriac P (2006) Effect of polyamine homologation on the transport and biological properties of heterocyclic amidines. J Med Chem 49:232–245. doi:10.1021/jm050018q

    Article  PubMed  CAS  Google Scholar 

  • Delpire E, Gagnon KB (2008) SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem J 409:321–331. doi:10.1042/BJ20071324

    Article  PubMed  CAS  Google Scholar 

  • Dot J, Lluch M, Blanco I, Rodriguez-Alvarez J (2000) Polyamine uptake in cultured astrocytes: characterization and modulation by protein kinases. J Neurochem 75:1917–1926

    Article  PubMed  CAS  Google Scholar 

  • Feige JJ, Chambaz EM (1985) Polyamine uptake by bovine adrenocortical cells. Biochim Biophys Acta 846:93–100. pii:0167-4889(85)90114-4

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Faroldi G, Rodriguez CE, Urdiales JL, Perez-Pomares JM, Davila JC, Pejler G, Sanchez-Jimenez F, Fajardo I (2010) Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS ONE 5:e15071. doi:10.1371/journal.pone.0015071

    Article  PubMed  CAS  Google Scholar 

  • Gardner RA, Delcros JG, Konate F, Breitbeil F 3rd, Martin B, Sigman M, Huang M, Phanstiel Ot (2004) N 1-substituent effects in the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 47:6055–6069. doi:10.1021/jm0497040

    Article  PubMed  CAS  Google Scholar 

  • Gawel-Thompson K, Greene RM (1988) Characterization of a polyamine transport system in murine embryonic palate mesenchymal cells. J Cell Physiol 136:237–246. doi:10.1002/jcp.1041360205

    Article  PubMed  CAS  Google Scholar 

  • Gawel-Thompson KJ, Greene RM (1989) Epidermal growth factor: modulator of murine embryonic palate mesenchymal cell proliferation, polyamine biosynthesis, and polyamine transport. J Cell Physiol 140:359–370. doi:10.1002/jcp.1041400222

    Article  PubMed  CAS  Google Scholar 

  • Gordonsmith RH, Brooke-Taylor S, Smith LL, Cohen GM (1983) Structural requirements of compounds to inhibit pulmonary diamine accumulation. Biochem Pharmacol 32:3701–3709. pii:0006-2952(83)90138-7

    Article  PubMed  CAS  Google Scholar 

  • Graminski GF, Carlson CL, Ziemer JR, Cai F, Vermeulen NM, Vanderwerf SM, Burns MR (2002) Synthesis of bis-spermine dimers that are potent polyamine transport inhibitors. Bioorg Med Chem Lett 12:35–40. pii:S0960894X0100659X

    Article  PubMed  CAS  Google Scholar 

  • Groblewski GE, Hargittai PT, Seidel ER (1992) Ca2+/calmodulin regulation of putrescine uptake in cultured gastrointestinal epithelial cells. Am J Physiol 262:C1356–C1363

    PubMed  CAS  Google Scholar 

  • Hasne MP, Ullman B (2011) Genetic and biochemical analysis of protozoal polyamine transporters. Methods Mol Biol 720:309–326. doi:10.1007/978-1-61779-034-8_19

    Article  PubMed  CAS  Google Scholar 

  • Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel Ot, Liebau E, Luersen K (2010) Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J 24:206–217. doi:10.1096/fj.09-135889

    Article  PubMed  Google Scholar 

  • Huber M, Pelletier J, Torossian K, Dionne P, Gamache I, Charest-Gaudreault R, Audette M, Poulin R (1996) 2, 2′-Dithiobis(N-ethyl-spermine-5-carboxamide) is a high affinity, membrane-impermeant antagonist of the mammalian polyamine transport system. J Biol Chem 271:27556–27563

    Article  PubMed  CAS  Google Scholar 

  • Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566. doi:10.1038/nrm2937

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem 48:506–512. doi:10.1016/j.plaphy.2010.01.017

    Article  PubMed  CAS  Google Scholar 

  • Kahana C (2009) Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor. Essays Biochem 46:47–61. doi:10.1042/bse0460004

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma Y, Hoshino K, Igarashi K (1988) Characterization of the inducible polyamine transporter in bovine lymphocytes. Eur J Biochem 176:409–414

    Article  PubMed  CAS  Google Scholar 

  • Kano K, Oka T (1976) Polyamine transport and metabolism in mouse mammary gland. General properties and hormonal regulation. J Biol Chem 251:2795–2800

    PubMed  CAS  Google Scholar 

  • Käpyaho K, Jänne J (1982) Regulation of putrescine metabolism in Ehrlich ascites carcinoma cells exposed to hypotonic medium. Biochim Biophys Acta 714:93–100

    Article  PubMed  Google Scholar 

  • Kashiwagi K, Pistocchi R, Shibuya S, Sugiyama S, Morikawa K, Igarashi K (1996) Spermidine-preferential uptake system in Escherichia coli. Identification of amino acids involved in polyamine binding in PotD protein. J Biol Chem 271:12205–12208

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh MP (1993) Voltage dependence of facilitated arginine flux mediated by the system y+ basic amino acid transporter. Biochemistry 32:5781–5785

    Article  PubMed  CAS  Google Scholar 

  • Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251. doi:10.1007/s11095-007-9254-z

    Article  PubMed  CAS  Google Scholar 

  • Kumagai J, Johnson LR (1988) Characteristics of putrescine uptake in isolated rat enterocytes. Am J Physiol 254:G81–G86

    PubMed  CAS  Google Scholar 

  • Lessard M, Zhao C, Singh SM, Poulin R (1995) Hormonal and feedback regulation of putrescine and spermidine transport in human breast cancer cells. J Biol Chem 270:1685–1694

    Article  PubMed  CAS  Google Scholar 

  • Li Y, MacKerell AD Jr, Egorin MJ, Ballesteros MF, Rosen DM, Wu YY, Blamble DA, Callery PS (1997) Comparative molecular field analysis-based predictive model of structure–function relationships of polyamine transport inhibitors in L1210 cells. Cancer Res 57:234–239

    PubMed  CAS  Google Scholar 

  • Lopez-Contreras AJ, Ramos-Molina B, Martinez-de-la-Torre M, Penafiel-Verdu C, Puelles L, Cremades A, Penafiel R (2008) Expression of antizyme inhibitor 2 in male haploid germinal cells suggests a role in spermiogenesis. Int J Biochem Cell Biol 41:1070–1078. doi:10.1016/j.biocel.2008.09.029

    Article  PubMed  Google Scholar 

  • Masuko T, Kusama-Eguchi K, Sakata K, Kusama T, Chaki S, Okuyama S, Williams K, Kashiwagi K, Igarashi K (2003) Polyamine transport, accumulation, and release in brain. J Neurochem 84:610–617

    Article  PubMed  CAS  Google Scholar 

  • McCormack SA, Johnson LR (1989) Putrescine uptake and release by colon cancer cells. Am J Physiol 256:G868–G877

    PubMed  CAS  Google Scholar 

  • Minchin RF, Martin RL (1997) Extracellular calcium stimulates Na+-dependent putrescine uptake in B16 melanoma cells. Int J Biochem Cell Biol 29:447–454. pii:S1357-2725(96)00145-8

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JL, Judd GG, Bareyal-Leyser A, Ling SY (1994) Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J 299:19–22

    PubMed  CAS  Google Scholar 

  • Mitchell JL, Judd GG, Leyser A, Choe C (1998) Osmotic stress induces variation in cellular levels of ornithine decarboxylase-antizyme. Biochem J 329:453–459

    PubMed  CAS  Google Scholar 

  • Munro GF, Hercules K, Morgan J, Sauerbier W (1972) Dependence of the putrescine content of Escherichia coli on the osmotic strength of the medium. J Biol Chem 247:1272–1280

    PubMed  CAS  Google Scholar 

  • Munro GF, Miller RA, Bell CA, Verderber EL (1975) Effects of external osmolality on polyamine metabolism in HeLa cells. Biochim Biophys Acta 411:263–281. pii:0304-4165(75)90306-2

    Article  PubMed  CAS  Google Scholar 

  • Nicolet TG, Scemama JL, Pradayrol L, Seva C, Vaysse N (1990) Characterization of putrescine- and spermidine-transport systems of a rat pancreatic acinar tumoral cell line (AR4–2J). Biochem J 269:629–632

    PubMed  CAS  Google Scholar 

  • Nicolet T, Scemama JL, Pradayrol L, Berthelemy P, Seva C, Vaysse N (1991) Putrescine and spermidine uptake is regulated by proliferation and dexamethasone treatment in AR4–2J cells. Int J Cancer 49:577–581

    Article  PubMed  CAS  Google Scholar 

  • Osborne DL, Seidel ER (1990) Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation. Am J Physiol 258:G576–G584

    PubMed  CAS  Google Scholar 

  • Parys JB, De Smedt H, Van Den Bosch L, Geuns J, Borghgraef R (1990) Regulation of the Na+-dependent and the Na+-independent polyamine transporters in renal epithelial cells (LLC-PK1). J Cell Physiol 144:365–375. doi:10.1002/jcp.1041440302

    Article  PubMed  CAS  Google Scholar 

  • Perry JW, Oka T (1980) Regulation of ornithine decarboxylase in cultured mouse mammary gland by the osmolarity in the cellular environment. Biochim Biophys Acta 629:24–35. pii:0304-4165(80)90261-5

    Article  PubMed  CAS  Google Scholar 

  • Phanstiel Ot, Kaur N, Delcros JG (2007) Structure–activity investigations of polyamine-anthracene conjugates and their uptake via the polyamine transporter. Amino Acids 33:305–313. doi:10.1007/s00726-007-0527-y

    Article  PubMed  CAS  Google Scholar 

  • Pohjanpelto P (1976) Putrescine transport is greatly increased in human fibroblasts initiated to proliferate. J Cell Biol 68:512–520

    Article  PubMed  CAS  Google Scholar 

  • Porter CW, Bergeron RJ (1983) Spermidine requirement for cell proliferation in eukaryotic cells: structural specificity and quantitation. Science 219:1083–1085

    Article  PubMed  CAS  Google Scholar 

  • Poulin R, Pegg AE (1990) Regulation of ornithine decarboxylase expression by anisosmotic shock in α-difluoromethylornithine-resistant L1210 cells. J Biol Chem 265:4025–4032

    PubMed  CAS  Google Scholar 

  • Poulin R, Wechter RS, Pegg AE (1991) An early enlargement of the putrescine pool is required for growth in L1210 mouse leukemia cells under hyposmotic stress. J Biol Chem 266:6142–6151

    PubMed  CAS  Google Scholar 

  • Poulin R, Coward JK, Lakanen JR, Pegg AE (1993) Enhancement of the spermidine uptake system and lethal effects of spermidine overaccumulation in ornithine decarboxylase-overproducing L1210 cells under hyposmotic stress. J Biol Chem 268:4690–4698

    PubMed  CAS  Google Scholar 

  • Poulin R, Pelletier G, Pegg AE (1995a) Induction of apoptosis by excessive polyamine accumulation in ornithine decarboxylase-overproducing L1210 cells. Biochem J 311:723–727

    PubMed  CAS  Google Scholar 

  • Poulin R, Lessard M, Zhao C (1995b) Inorganic cation dependence of putrescine and spermidine transport in human breast cancer cells. J Biol Chem 270:1695–1704

    Article  PubMed  CAS  Google Scholar 

  • Poulin R, Zhao C, Verma S, Charest-Gaudreault R, Audette M (1998) Dependence of mammalian putrescine and spermidine transport on plasma- membrane potential: identification of an amiloride binding site on the putrescine carrier. Biochem J 330:1283–1291

    PubMed  CAS  Google Scholar 

  • Rannels DE, Kameji R, Pegg AE, Rannels SR (1989) Spermidine uptake by type II pneumocytes: interactions of amine uptake pathways. Am J Physiol 257:L346–L353

    PubMed  CAS  Google Scholar 

  • Redgate ES, Grudziak AG, Deutsch M, Boggs SS (1997) Difluoromethylornithine enhanced uptake of tritiated putrescine in 9L rat brain tumors. Int J Radiat Oncol Biol Phys 38:169–174. pii:S0360-3016(97)00243-5

    Article  PubMed  CAS  Google Scholar 

  • Rinehart CA Jr, Chen KY (1984) Characterization of the polyamine transport system in mouse neuroblastoma cells. Effects of sodium and system A amino acids. J Biol Chem 259:4750–4756

    PubMed  CAS  Google Scholar 

  • Roy UK, Rial NS, Kachel KL, Gerner EW (2008) Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis. Mol Carcinog 47:538–553. doi:10.1002/mc.20414

    Article  PubMed  CAS  Google Scholar 

  • Seiler N (2003) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives. Curr Drug Targets 4:565–585

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Dezeure F (1990) Polyamine transport in mammalian cells. Int J Biochem 22:211–218

    Article  PubMed  CAS  Google Scholar 

  • Seiler N, Delcros JG, Moulinoux JP (1996) Polyamine transport in mammalian cells. An update. Int J Biochem Cell Biol 28:843–861

    Article  PubMed  CAS  Google Scholar 

  • Sharpe JG, Seidel ER (2005) Polyamines are absorbed through a y+ amino acid carrier in rat intestinal epithelial cells. Amino Acids 29:245–253. doi:10.1007/s00726-005-0234-5

    Article  PubMed  CAS  Google Scholar 

  • Soulet D, Covassin L, Kaouass M, Charest-Gaudreault R, Audette M, Poulin R (2002) Role of endocytosis in the internalization of spermidine-C2-BODIPY, a highly fluorescent probe of polyamine transport. Biochem J 367:347–357. doi:10.1042/BJ20020764

    Article  PubMed  CAS  Google Scholar 

  • Soulet D, Gagnon B, Rivest S, Audette M, Poulin R (2004) A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J Biol Chem 279:49355–49366. doi:10.1074/jbc.M401287200

    Article  PubMed  CAS  Google Scholar 

  • Torossian K, Audette M, Poulin R (1996) Substrate protection against inactivation of the mammalian polyamine- transport system by 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide. Biochem J 319:21–26

    PubMed  CAS  Google Scholar 

  • Uemura T, Yerushalmi HF, Tsaprailis G, Stringer DE, Pastorian KE, Hawel L 3rd, Byus CV, Gerner EW (2008) Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem 283:26428–26435. doi:10.1074/jbc.M804714200

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Stringer DE, Blohm-Mangone KA, Gerner EW (2010) Polyamine transport is mediated by both endocytic and solute carrier transport mechanisms in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 299:G517–G522. doi:10.1152/ajpgi.00169.2010

    Article  PubMed  CAS  Google Scholar 

  • Volkow N, Goldman SS, Flamm ES, Cravioto H, Wolf AP, Brodie JD (1983) Labeled putrescine as a probe in brain tumors. Science 221:673–675

    Article  PubMed  CAS  Google Scholar 

  • Wang JT, Kerr MC, Karunaratne S, Jeanes A, Yap AS, Teasdale RD (2010) The SNX-PX-BAR family in macropinocytosis: the regulation of macropinosome formation by SNX-PX-BAR proteins. PLoS ONE 5:e13763. doi:10.1371/journal.pone.0013763

    Article  PubMed  Google Scholar 

  • Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC, Cullen PJ (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 17:110–122. doi:10.1016/j.devcel.2009.04.016

    Article  PubMed  CAS  Google Scholar 

  • Wehner F (2006) Cell volume-regulated cation channels. Contrib Nephrol 152:25–53. doi:10.1159/000096315

    Article  PubMed  CAS  Google Scholar 

  • Wilson L, Gage P, Ewart G (2006) Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 353:294–306. doi:10.1016/j.virol.2006.05.028

    Article  PubMed  CAS  Google Scholar 

  • Winter TN, Elmquist WF, Fairbanks CA (2011) OCT2 and MATE1 provide bidirectional agmatine transport. Mol Pharm 8:133–142. doi:10.1021/mp100180a

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Davis MJ (2001) Characterization of stretch-activated cation current in coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 280:H1751–H1761

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Part of the work mentioned in this review that was performed by the authors was made possible through various grants from the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, the Cancer Research Society-Quebec and the National Institutes of Health (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Poulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulin, R., Casero, R.A. & Soulet, D. Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42, 711–723 (2012). https://doi.org/10.1007/s00726-011-0987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0987-y

Keywords

Navigation