Skip to main content

Advertisement

Log in

Effects of novel C-methylated spermidine analogs on cell growth via hypusination of eukaryotic translation initiation factor 5A

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The polyamines, putrescine, spermidine, and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report the ability of novel mono-methylated spermidine analogs (α-MeSpd, β-MeSpd, γ-MeSpd, and ω-MeSpd) to function in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, β-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and β-MeSpd supported long-term growth (9–18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R-isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

eIF5A:

Eukaryotic translation initiation factor 5A

DHS:

Deoxyhypusine synthase

DOHH:

Deoxyhypusine hydroxylase

DFMO:

α-Difluoromethylornithine

DTT:

Dithiothreitol

AG:

Aminoguanidine

Spd:

Spermidine

Spm:

Spermine

Put:

Putrescine

MeSpd:

Methylated spermidine

MeSpm:

Methylated spermine

SSAT1:

Spermidine/spermine N1-acetyltransferase

APAO:

Acetylpolyamine oxidase

TCA:

Trichloroacetic acid

DENSpm:

N 1,N 11-Diethylnorspermine

References

  • Abbruzzese A, Park MH, Folk JE (1986) Deoxyhypusine hydroxylase from rat testis: partial purification and characterization. J Biol Chem 261:3085–3089

    PubMed  CAS  Google Scholar 

  • Alhonen L, Karppinen A, Uusi-Oukari M, Vujcic S, Korhonen VP, Halmekytö M, Kramer DL, Hines R, Jänne J, Porter CW (1998) Correlation of polyamine and growth responses to N1, N11-diethylnorspermine in primary fetal fibroblasts derived from transgenic mice overexpressing spermidine/spermine N1-acetyltransferase. J Biol Chem 273:1964–1969

    Article  PubMed  CAS  Google Scholar 

  • Bernacki RJ, Bergeron RJ, Porter CW (1992) Antitumor activity of N, N’-bis(ethyl)spermine homologues against human MALME-3 melanoma xenografts. Cancer Res 52:2424–2430

    PubMed  CAS  Google Scholar 

  • Byers TL, Ganem B, Pegg AE (1992) Cytostasis induced in L1210 murine leukaemia cells by the S-adenosyl-L- methionine decarboxylase inhibitor 5’-([(Z)-4-amino-2- butenyl]methylamino)-5’-deoxyadenosine may be due to hypusine depletion. Biochem J 287:717–724

    PubMed  CAS  Google Scholar 

  • Byers TL, Lakanen JR, Coward JK, Pegg AE (1994) The role of hypusine depletion in cytostasis induced by S-adenosyl-L- methionine decarboxylase inhibition: new evidence provided by 1- methylspermidine and 1, 12-dimethylspermine. Biochem J 303:363–368

    PubMed  CAS  Google Scholar 

  • Chattopadhyay MK, Park MH, Tabor H (2008) Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc Natl Acad Sci USA 105:6554–6559

    Article  PubMed  CAS  Google Scholar 

  • Chen KY, Liu AY (1997) Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol Signals 6:105–109

    Article  PubMed  CAS  Google Scholar 

  • Grigorenko NA, Vepsäläinen J, Järvinen A, Keinänen TA, Alhonen L, Jänne J, Kritsyn AM, Khomutov AR (2004) A new synthesis of alpha-methylspermidine. Russ J Bioorg Khim 30:441–445

    Article  CAS  Google Scholar 

  • Grigorenko NA, Khomutov AR, Keinänen TA, Järvinen A, Alhonen L, Jänne J, Vepsäläinen J (2007) Synthesis of novel optical isomers of alpha-methylpolyamines. Tetrahedron 63:2257–2262

    Article  CAS  Google Scholar 

  • Hyvönen T, Keinänen TA, Khomutov AR, Khomutov RM, Eloranta TO (1992) Monitoring of the uptake and metabolism of aminooxy analogues of polyamines in cultured cells by high-performance liquid chromatography. J Chromatogr Biomed Appl 574:17–21

    Article  Google Scholar 

  • Hyvönen MT, Keinänen TA, Cerrada-Gimenez M, Sinervirta R, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L, Jänne J (2007) Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis. J Biol Chem 282:34700–34706

    Article  PubMed  Google Scholar 

  • Hyvönen MT, Howard MT, Anderson CB, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L, Jänne J, Keinänen TA (2009) Divergent regulation of the key enzymes of polyamine metabolism by chiral alpha-methylated polyamine analogues. Biochem J 422:321–328

    Article  PubMed  Google Scholar 

  • Hyvönen MT, Keinänen TA, Khomutov M, Simonian A, Weisell J, Kochetkov SN, Vepsäläinen J, Alhonen L, Khomutov AR (2011) The use of novel C-methylated spermidine derivatives to investigate the regulation of polyamine metabolism. J Med Chem 54:4611–4618

    Google Scholar 

  • Jakus J, Wolff EC, Park MH, Folk JE (1993) Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono- guanylated diamines and polyamines. J Biol Chem 268:13151–13159

    PubMed  CAS  Google Scholar 

  • Joe YA, Wolff EC, Park MH (1995) Cloning and expression of human deoxyhypusine synthase cDNA Structure-function studies with the recombinant enzyme and mutant proteins. J Biol Chem 270:22386–22392

    Article  PubMed  CAS  Google Scholar 

  • Khomutov AR, Weisell J, Khomutov MA, Grigorenko NA, Simonian AR, Häkkinen MR, Keinänen TA, Hyvönen MT, Alhonen L, Kochetkov SN, Vepsäläinen J (2011) Methylated polyamines as research tools. Polyamines Methods Mol Biol. C. R. Pegg AE. New York, Springer 720:449–461

  • Lakanen JR, Coward JK, Pegg AE (1992) Alpha-methyl polyamines—metabolically stable spermidine and spermidine mimics capable of supporting growth in cells depleted of polyamines. J Med Chem 35:724–734

    Article  PubMed  CAS  Google Scholar 

  • Lentini A, Provenzano B, Tabolacci C, Beninati S (2009) Protein-polyamine conjugates by transglutaminase 2 as potential markers for antineoplastic screening of natural compounds. Amino Acids 36:701–708

    Article  PubMed  CAS  Google Scholar 

  • Metcalf BW, Bet P, Danzin C, Jung MJ, Casara P, Vevert JP (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase (EC 4.1.1.17) by substrate and product analogs. J Am Chem Soc 100:2551–2553

    Article  CAS  Google Scholar 

  • Nagarajan S, Ganem B, Pegg AE (1988) Studies of non-metabolizable polyamines that support growth of SV-3T3 cells depleted of natural polyamines by exposure to alpha-difluoromethylornithine. Biochem J 254:373–378

    PubMed  CAS  Google Scholar 

  • Nishimura K, Murozumi K, Shirahata A, Park MH, Kashiwagi K, Igarashi K (2005) Independent roles of eIF5A and polyamines in cell proliferation. Biochem J 385:779–785

    Article  PubMed  CAS  Google Scholar 

  • Nishimura K, Lee SB, Park J-H, Park MH (2011) Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids (in press)

  • Park MH (1989) The essential role of hypusine in eukaryotic translation initiation factor 4D (eIF-4D). Purification of eIF-4D and its precursors and comparison of their activities. J Biol Chem 264:18531–18535

    PubMed  CAS  Google Scholar 

  • Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem (Tokyo) 139:161–169

    Article  CAS  Google Scholar 

  • Park MH, Cooper HL, Folk JE (1981) Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proc Natl Acad Sci USA 78:2869–2873

    Article  PubMed  CAS  Google Scholar 

  • Park MH, Wolff EC, Smit-McBride Z, Hershey JW, Folk JE (1991) Comparison of the activities of variant forms of eIF-4D The requirement for hypusine or deoxyhypusine. J Biol Chem 266:7988–7994

    PubMed  CAS  Google Scholar 

  • Park MH, Joe YA, Kang KR (1998) Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae. J Biol Biochem 273:1677–1683

    CAS  Google Scholar 

  • Park J-H, Wolff EC, Folk JE, Park MH (2003) Reversal of the deoxyhypusine synthesis reaction Generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthase. J Biol Chem 278:32683–32691

    Article  PubMed  CAS  Google Scholar 

  • Park J-H, Aravind L, Wolff EC, Kaevel J, Kim YS, Park MH (2006) Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme. Proc Natl Acad Sci USA 103:51–56

    Article  PubMed  CAS  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38:491–500

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61:880–894

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, Casero RAJ (2011) Current status of the polyamine research field. Polyamines Methods Mol Biol. C. R. Pegg AE. New York, Springer 720:3–35

  • Sasaki K, Abid MR, Miyazaki M (1996) Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett 384:151–154

    Article  PubMed  CAS  Google Scholar 

  • Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JW (1991) Translation initiation factor 5A and its hypusine modification are essential for viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11:3105–3114

    PubMed  CAS  Google Scholar 

  • Smit-McBride Z, Schnier J, Kaufman RJ, Hershey JW (1989) Protein synthesis initiation factor eIF-4D Functional comparison of native and unhypusinated forms of the protein. J Biol Chem 264:18527–18530

    PubMed  CAS  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    Article  PubMed  CAS  Google Scholar 

  • Umland TC, Wolff EC, Park MH, Davies DR (2004) A new crystal structure of deoxyhypusine synthase reveals the configuration of the active enzyme and of an enzyme. NAD inhibitor ternary complex. J Biol Chem 279:28697–28705

    Article  PubMed  CAS  Google Scholar 

  • Wöhl T, Klier H, Ammer H (1993) The HYP2 gene of Saccharomyces cerevisiae is essential for aerobic growth: characterization of different isoforms of the hypusine-containing protein Hyp2p and analysis of gene disruption mutants. Mol Gen Genet 241:305–311

    Article  PubMed  Google Scholar 

  • Wolff EC, Kang KR, Kim YS, Park MH (2007) Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids 33:341–350

    Article  PubMed  CAS  Google Scholar 

  • Wolff EC, Lee SB, Park MH (2011) Assay of deoxyhypusine synthase activity. Polyamines Methods Mol Biol. C. R. Pegg AE. New York, Springer 720:195–205

Download references

Acknowledgments

The research was supported in part by the Intramural Research Program of National Institute of Dental and Craniofacial Research (NIDCR), NIH and by grants from the Academy of Finland, the Russian Foundation for Basic Research [grant number 09-04-01272], the program Molecular and Cell Biology of the Presidium of the Russian Academy of Sciences, the North Savo Regional Fund of the Finnish Cultural Foundation and by the University of Eastern Finland (Novel Materials, Technologies and Drug Molecules Based on Phosphorus and/or Nitrogen Compounds; JV/TAK). The authors thank Ms. Sisko Juutinen, Ms. Anne Karppinen, Ms Arja Korhonen, and Ms. Tuula Reponen for skillful technical assistance and Dr. Edith C. Wolff (NIDCR, NIH) for critical reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mervi T. Hyvönen or Myung Hee Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyvönen, M.T., Keinänen, T.A., Khomutov, M. et al. Effects of novel C-methylated spermidine analogs on cell growth via hypusination of eukaryotic translation initiation factor 5A. Amino Acids 42, 685–695 (2012). https://doi.org/10.1007/s00726-011-0984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0984-1

Keywords

Navigation