Skip to main content

Advertisement

Log in

Spermidine, a sensor for antizyme 1 expression regulates intracellular polyamine homeostasis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Although intracellular polyamine levels are highly regulated, it is unclear whether intracellular putrescine (PUT), spermidine (SPD), or spermine (SPM) levels act as a sensor to regulate their synthesis or uptake. Polyamines have been shown to induce AZ1 expression through a unique +1 frameshifting mechanism. However, under physiological conditions which particular polyamine induces AZ1, and thereby ODC activity, is unknown due to their inter-conversion. In this study we demonstrate that SPD regulates AZ1 expression under physiological conditions in IEC-6 cells. PUT and SPD showed potent induction of AZ1 within 4 h in serum-starved confluent cells grown in DMEM (control) medium. Unlike control cells, PUT failed to induce AZ1 in cells grown in DFMO containing medium; however, SPD caused a robust AZ1 induction in these cells. SPM showed very little effect on AZ1 expression in both the control and polyamine-depleted cells. Only SPD induced AZ1 when S-adenosylmethionine decarboxylase (SAMDC) and/or ODC were inhibited. Surprisingly, addition of DENSpm along with DFMO restored AZ1 induction by putrescine in polyamine-depleted cells suggesting that the increased SSAT activity in response to DENSpm converted SPM to SPD, leading to the expression of AZ1. This study shows that intracellular SPD levels controls AZ1 synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    Article  CAS  PubMed  Google Scholar 

  • Chen KY, Canellakis ES (1977) Enzyme regulation in neuroblastoma cells in a salts-glucose medium: induction of ornithine decarboxylase by asparagine and glutamine. Proc Natl Acad Sci USA 74:3791–3795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I Columnar Cell Am J Anat 141:461–479

    Article  CAS  Google Scholar 

  • Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Feith DJ, Shantz LM, Pegg AE (2001) Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 61:6073–6081

    CAS  PubMed  Google Scholar 

  • Fong LY, Feith DJ, Pegg AE (2003) Antizyme over expression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamide-induced forestomach carcinogenesis. Cancer Res 63:3945–3954

    CAS  PubMed  Google Scholar 

  • Grillo MA (1985) Metabolism and function of polyamines. Int J Biochem 17:943–948

    Article  CAS  PubMed  Google Scholar 

  • Hall PA, Coates PJ, Ansari B, Hopwood D (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107:3569–3577

    CAS  PubMed  Google Scholar 

  • Hayashi S, Murakami Y, Matsufuji S (1996) Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci 21:27–30

    Article  CAS  PubMed  Google Scholar 

  • Heby O, Persson L (1990a) Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci 15:153–158

    Article  CAS  PubMed  Google Scholar 

  • Heby O, Persson L (1990b) Polyamine-mediated control of ornithine decarboxylase and S-adenosyl- methionone decarboxylase expression in mammalian cells. Biochem Soc Trans 18:1084–1087

    CAS  PubMed  Google Scholar 

  • Hibasami H, Borchardt RT, Chen Y, Coward JK, Pegg AE (1980) Studies on inhibition of rat spermidine synthase and spermine synthase. Biochem J 187:419–428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNA from yeast and protest to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nuc acid Res 35:1842–1858

    Article  CAS  Google Scholar 

  • Kameji T, Pegg AE (1987) Effect of putrescine on the synthesis of S-adenosylmethionine decarboxylase. Biochem J 243:285–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Auto- regulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    Article  CAS  PubMed  Google Scholar 

  • McCormack SA, Viar MJ, Johnson LR (1993) Polyamines are necessary for cell migration by a small intestinal crypt cell line. Am J Physiol Gastrointest Liver Physiol 264:G367–G374

    CAS  Google Scholar 

  • Mitchell JL, Judd GG, Bareyal-Leyser A, Ling SY (1994) Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J 299:19–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell JL, Judd GG, Leyser A, Choe C (1998) Osmotic stress induces variation in cellular levels of ornithine decarboxylaseantizyme. Biochem J 329:453–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell JL, Thane TK, Sequeria JM, Marton LJ, Thokala R (2007) Antizyme and antizyme inhibitor activities influence cellular responses to polyamine analogs. Amino Acids 33:291–297

    Article  CAS  PubMed  Google Scholar 

  • Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. The EMBO 23:4857–4867

    Article  CAS  Google Scholar 

  • Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (2008) Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator. Am J Endocrinol Metab 294:E995–E1010

    Article  CAS  Google Scholar 

  • Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243:C212–C221

    CAS  PubMed  Google Scholar 

  • Pegg AE, Feith DJ, Fong LY, Coleman CS, O’Brien TG, Shantz LM (2003) Transgenic mouse models for studies of the role of polyamines in normal, hypertropic and neoplastic growth. Biochem Soc Trans 31:356–360

    Article  CAS  PubMed  Google Scholar 

  • Quaroni A, Wands J, Trelstad RL, Isselbacher KJ (1988) Epithelial cell culture from rat small intestine. J Cell Biol 80:248–265

    Article  Google Scholar 

  • Rato C, Amirova SR, Bates DG, Stansfield I, Wallace HM (2011) Translational recording as a feedback controller: syetem approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res 39:4587–4597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ray RM, Johnson LR (2013) Regulation of intestinal mucosal growth by amino acids. Amino Acids. doi:10.1007/s00726-013-1565-2

    PubMed  Google Scholar 

  • Ray RM, Viar MJ, Patel TB, Johnson LR (1999a) Interaction of asparagine and EGF in the regulation of ornithine decarboxylase in IEC-6 cells. Am J Physiol 276:G773–G780

    CAS  PubMed  Google Scholar 

  • Ray RM, Zimmerman BJ, McCormack SA, Patel TB, Johnson LR (1999b) Polyamine depletion arrests cell cycle and induces inhibitors p21Waf1/Cip1, p27Kip1, and p53 in IEC-6 cells. Am J Physiol Cell Physiol 276:C684–C691

    CAS  Google Scholar 

  • Ray RM, Viar MJ, Yuan Q, Johnson LR (2000) Polyamine depletion delays apoptosis of rat intestinal epithelial cells. Am J Physiol 278:C400–C489

    Google Scholar 

  • Ray RM, McCormack SA, Covington C, Viar MJ, Zheng Y, Johnson LRC (2003) The requirement for polyamines for intestinal epithelial cell migration is mediated through Rac1. J Biol Chem 278:13039–13046

    Article  CAS  PubMed  Google Scholar 

  • Ray RM, Viar MJ, Johnson LR (2012) Amino acids regulate the expression of antizyme-1 to modulate ornithine decarboxylase activity. J Biol Chem 287:3674–3690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinehart CA Jr, Viceps-Madore D, Fong WF, Ortiz JG, Canellakis ES (1985) The effect of transportsystem A and N amino acids and nerve and epidermal growth factors on the induction of ornithine decarboxylase activity. J Cell Physiol 123:435–441

    Article  CAS  PubMed  Google Scholar 

  • Rom E, Kahana C (1994) Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frameshifting. Proc Natl Acad Sci USA 91:3959–3963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seiler N, Delcros JG, Moulinoux JP (1996) Polyamine transport in mammalian cells. An update. Int J Biochem Cell Biol 28:843–861

    Article  CAS  PubMed  Google Scholar 

  • Shantz LM, Pegg AE (1999) Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. Int J Biochem Cell Biol 31:107–122

    Article  CAS  PubMed  Google Scholar 

  • Shantz LM, Holm I, Janne OA, Pegg AE (1992) Regulation of S-adenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content. Biochem J 288:511–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley BA, Pegg AE (1991) Amino acid residues necessary for putrescine stimulation of human S-adenosylmethionine decarboxylase proenzyme processing and catalytic activity. J Biol Chem 266:18502–18506

    CAS  PubMed  Google Scholar 

  • Svensson F, Kockum I, Persson L (1993) Diethylglyoxal bis- (guanylhydrazone), a potent inhibitor of mammalian S-adenosylmethionine decarboxylase. Effects on cell proliferation and polyamine metabolism in L1210 leukemia cells. Mol Cell Biochem 124:141–147

    Article  CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Wang S, Wang B, Zhang J, Jiang R, Zhang W (2012) Overexpression of SSAT by DENSPM treatment induces cell detachment and apoptosis in gliobalstoma. Oncol Rep 27:1227–1232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uimari A, Keinanen TA, Karppinen A, Woster P, Uimari P, Janne J, Alohen L (2009) Spermine analogue-regulated expression of spermidine/spermine N1-acetyltransferase and its effects on depletion of intracellular polyamine pools in mouse fetal fibroblasts. Biochem J 422:101–109

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Shirahata A (2010) Conformational stabilization of rat S-adenosylmethionine decarboxylase by putrescine. Biol Pharm Bull 33:1800–1805

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Johnson LR (1990) Luminal polyamines stimulate repair of gastric mucosal stress ulcers. Am J Physiol 259:G584–G592

    CAS  PubMed  Google Scholar 

  • Wang JY, Johnson LR (1991) Role of ornithine decarboxylase in the repair process of gastric mucosal stress ulcers. Am J Physiol 258:G78–G85

    Google Scholar 

  • Wang JY, McCormack SA, Viar MJ, Johnson LR (1991) Stimulation of proximal small intestinal mucosal growth by luminal polyamines. Am J Physiol Gastrointest Liver Physiol 261:G504–G511

    CAS  Google Scholar 

  • Wang JY, Viar MJ, McCormack SA, Johnson LR (1992) Effect of putrescine on S-adenosylmethionine decarboxylase in a small intestinal crypt cell line. Am J Physiol 263:G494–G501

    CAS  PubMed  Google Scholar 

  • Yang P, Baylin SB, Luk GD (1984) Polyamines and intestinal growth: absolute requirement for ODC activity in adaptation during lactation. Am J Physiol 247:G553–G557

    CAS  PubMed  Google Scholar 

  • Yuan Q, Viar MJ, Ray RM, Johnson LR (2000) Putrescine does not support the migration and growth of IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 278:G49–G56

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grants (Number DK-16505) from the National Institute of Diabetes and Digestive and Kidney Disease (NIDDK) and by support from the Thomas A. Gerwin endowment. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh M. Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, R.M., Bhattacharya, S., Bavaria, M.N. et al. Spermidine, a sensor for antizyme 1 expression regulates intracellular polyamine homeostasis. Amino Acids 46, 2005–2013 (2014). https://doi.org/10.1007/s00726-014-1757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1757-4

Keywords

Navigation