Skip to main content

Advertisement

Log in

Glycation and biomarkers of vascular complications of diabetes

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Propensity to diabetic nephropathy (DN), retinopathy (DR), and cardiovascular disease (CVD) varies between individuals. Current biomarkers such as indicators of glycemia (HbA1c), retinal examinations, and albuminuria, cannot detect early tissue damage. HbAIc also doesn’t reflect most glycative and oxidative chemical pathways that cause complications, and studies of new biomarkers to measure their end-products are needed. This review proposes the study of advanced glycation end products (AGEs) and oxidation end-products (OPs) in long-term diabetes outcome studies. AGEs integrate the activity of glycation pathways that form dicarbonyls, while OPs reflect superoxides, hydroxyl radicals, and peroxides. We discuss using these biomarkers to predict risk of development and progression of DN, DR, and CVD, and to determine if they confer risk independently of the level of HbA1c. We also discuss methods and guidelines to document sample quality in such studies. These studies have the potential to validate unique biomarkers during the early stages of diabetes in those who are at high risk of diabetic complications. Information on basic mechanisms responsible for complications could also stimulate development of therapeutic approaches to delay or arrest them. The ultimate goal is to predict those requiring aggressive therapies during the earliest stages, when prevention or reversal of complications is still possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24):2545–2559

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Argirov OK, Minhas HS, Cordeiro CA, Thornalley PJ (2002) Assay of advanced glycation endproducts (ages): surveying ages by chromatographic assay with derivatization by 6-aminoquinolyl-n-hydroxysuccinimidyl-carbamate and application to nepsilon-carboxymethyl-lysine- and nepsilon-(1-carboxyethyl)lysine-modified albumin. Biochem J 364(Pt 1):1–14

    PubMed  CAS  Google Scholar 

  • Ahmed N, Babaei-Jadidi R, Howell S, Beisswenger P, Thornalley P (2005a) Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 48:1590–1603

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Babaei-Jadidi R, Howell S, Thornalley P, Beisswenger P (2005b) Glycated and oxidised protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 28:2465–2471

    Article  PubMed  CAS  Google Scholar 

  • Almuti K, Rimawi R, Spevack D, Ostfeld RJ (2006) Effects of statins beyond lipid lowering: potential for clinical benefits. Int J Cardiol 109(1):7–15 [review] [108 refs]

    Article  PubMed  Google Scholar 

  • Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25(6):496–501

    Article  PubMed  CAS  Google Scholar 

  • Association AD (2007) Standards of medical care in diabetes. Diabetes Care 30(suppl 1):S4–S41

    Article  Google Scholar 

  • Baynes J, Thorpe S (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW, Thorpe SR (2000) Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 28(12):1708–1716 [review] [73 refs]

    Article  PubMed  CAS  Google Scholar 

  • Beisswenger PJ, Moore LL, Brinck-Johnsen T, Curphey TJ (1993) Increased collagen-linked pentosidine levels and advanced glycosylation end products in early diabetic nephropathy. J Clin Invest 92(1):212–217

    Article  PubMed  CAS  Google Scholar 

  • Beisswenger P, Lal S, Howell S, Stevens R, Siegel A, Yeo K, Randall W, Brown T, Szwergold B (1998) The role of 3-deoxyglucosone and the activity of its degradative pathways in the etiology of diabetic microvascular disease. In: O’Brien J, Nursten H, Crabbe M, Ames J (eds) The maillard reaction in foods and medicine. Royal Society of Chemistry, Cambridge, pp 298–303

    Chapter  Google Scholar 

  • Beisswenger P, Howell S, Touchette A, Lal S, Szwergold B (1999) Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48:198–202

    Article  PubMed  CAS  Google Scholar 

  • Beisswenger P, Howell S, O’Dell R, Wood M, Touchette A, Szwergold B (2001) Alpha dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care 24:726–732

    Article  PubMed  CAS  Google Scholar 

  • Beisswenger P, Drummond K, Nelson R, Howell S, Szwergold B, Mauer M (2005) Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes 54:3274–3281

    Article  PubMed  CAS  Google Scholar 

  • Beisswenger P, Howell S, Szwergold B, Rich S, Russell G, Kim Y, Mauer M (2008) Progression of diabetic nephropathy is predicted by increased oxidative stress and decreased deglycation. Diabetologia 51(Suppl 1):S24

    Google Scholar 

  • Borch-Johnsen K, Norgaard K, Hommel E, Mathiesen ER, Jensen JS, Deckert T, Parving HH (1992) Is diabetic nephropathy an inherited complication? Kidney Int 41(4):719–722

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (1992) Glycation products and the pathogenesis of diabetic complications. Diabetes Care 15(12):1835–1843

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Bucala R, Cerami A (1992) Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharm 23:1–34

    Article  CAS  Google Scholar 

  • Bunn HF, Higgins PJ (1981) Reaction of monosaccharides with proteins. Possible evolutionary significance. Science 213:222–224

    Article  PubMed  CAS  Google Scholar 

  • Caramori ML, Kim Y, Huang C, Fish AJ, Rich SS, Miller ME, Russell G, Mauer M (2002) Cellular basis of diabetic nephropathy: 1. Study design, renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes 51(2):506–513 [erratum appears in diabetes apr;51(4):1294]

    Article  PubMed  CAS  Google Scholar 

  • Cefalu WT (2008) Glycemic targets and cardiovascular disease. N Engl J Med 358(24):2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, Viberti GC (2000) Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes 49(12):2170–2177

    Article  PubMed  CAS  Google Scholar 

  • Ceriello A, Hanefeld M, Leiter L, Monnier L, Moses A, Owens D, Tajima N, Tuomilehto J (2004) Postprandial glucose regulation and diabetic complications. Arch Intern Med 164(19):2090–2095 [review] [58 refs]

    Article  PubMed  CAS  Google Scholar 

  • DCCT/EDIC Complications Research G (2002) Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. Jama 287(19):2563–2569

    Article  Google Scholar 

  • DCCT Research Group (1995) The relationship of glycemic exposure (hba1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 44(8):968–983

    Article  Google Scholar 

  • DCCT Research Group (1997) Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 46:1829–1839

    Article  Google Scholar 

  • Degenhardt TP, Thorpe SR, Baynes JW (1998) Chemical modification of proteins by methylglyoxal. Cell Mol Biol 44(7):1139–1145

    PubMed  CAS  Google Scholar 

  • Dluhy RG, McMahon GT (2008) Intensive glycemic control in the accord and advance trials. N Engl J Med 358(24):2630–2633

    Article  PubMed  CAS  Google Scholar 

  • Drummond K, Mauer M, International Diabetic Nephropathy Study G (2002) The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 51(5):1580–1587

    Article  PubMed  CAS  Google Scholar 

  • Drummond KN, Kramer MS, Suissa S, Levy-Marchal C, Dell’Aniello S, Sinaiko A, Mauer M, International Diabetic Nephropathy Study G (2003) Effects of duration and age at onset of type 1 diabetes on preclinical manifestations of nephropathy. Diabetes 52(7):1818–1824

    Article  PubMed  CAS  Google Scholar 

  • Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003) Inhibition of gapdh activity by poly(adp-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells.[see comment]. J Clin Invest 112(7):1049–1057

    PubMed  CAS  Google Scholar 

  • Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, Baynes JW (1993) Accumulation of maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91(6):2463–2469

    Article  PubMed  CAS  Google Scholar 

  • Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10(1):53–63

    PubMed  CAS  Google Scholar 

  • ETDRS (1991) Early photocoagulation for diabetic retinopathy. Etdrs report number 9. Early treatment diabetic retinopathy study research group. Ophthalmology 98(Suppl 5):766–785

    Google Scholar 

  • Fioretto P, Steffes MW, Barbosa J, Rich SS, Miller ME, Mauer M (1999) Is diabetic nephropathy inherited? Studies of glomerular structure in type 1 diabetic sibling pairs. Diabetes 48(4):865–869

    Article  PubMed  CAS  Google Scholar 

  • Fong DS, Ferris FL 3rd, Davis MD, Chew EY (1999) Causes of severe visual loss in the early treatment diabetic retinopathy study: Etdrs report no. 24. Early treatment diabetic retinopathy study research group. Am J Ophthalmol 127(2):137–141

    Article  PubMed  CAS  Google Scholar 

  • Frank RN (2004) Diabetic retinopathy. N Engl J Med 350(1):48–58 [see comment] [review] [94 refs]

    Article  PubMed  CAS  Google Scholar 

  • Gaut JP, Byun J, Tran HD, Heinecke JW (2002) Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry, liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem 300(2):252–259 [erratum appears in anal biochem 2002 may 15;304(2):275]

    Article  PubMed  CAS  Google Scholar 

  • Geibauf A, Van Wickern B, Simat T, Steinhart H, Esterbauer H (1996) Formation of n-formylkynurenine suggests the involvement of apolipoprotein b-100 centered tryptophan radicals in the initiation of ldl lipid peroxidation. FEBS Lett 389:136–140

    Article  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899 [review] [45 refs]

    Article  PubMed  CAS  Google Scholar 

  • Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339(4):229–234 [comment]

    Article  PubMed  CAS  Google Scholar 

  • Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51(10):3107–3112

    Article  PubMed  CAS  Google Scholar 

  • Hammes H, Xueliang D, Edelstein D, Taguchi T, Matsumura T, Q J, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Berfield R, Giardina I, Brownlee M (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299

    Article  PubMed  CAS  Google Scholar 

  • Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88(2):2

    Google Scholar 

  • Hirata C, Nakano K, Nakamura N, Kitagawa Y, Shigeta H, Hasegawa G, Ogata M, Ikeda T, Sawa H, Nakamura K, Ienaga K, Obayashi H, Kondo M (1997) Advanced glycation end products induce expression of vascular endothelial growth factor by retinal muller cells. Biochem Biophys Res Commun 236:712–715

    Article  PubMed  CAS  Google Scholar 

  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15):1577–1589 [see comment]

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Kim Y, Caramori ML, Fish AJ, Rich SS, Miller ME, Russell GB, Mauer M (2002) Cellular basis of diabetic nephropathy: II. The transforming growth factor-beta system and diabetic nephropathy lesions in type 1 diabetes. Diabetes 51(12):3577–3581

    Article  PubMed  CAS  Google Scholar 

  • Hunt KJ, Williams K, Hazuda HP, Stern MP, Haffner SM (2007) The metabolic syndrome and the impact of diabetes on coronary heart disease mortality in women and men: the san antonio heart study. Ann Epidemiol 17(11):870–877

    Article  PubMed  Google Scholar 

  • Kalea AZ, Schmidt AM, Hudson BI (2009) Rage: a novel biological and genetic marker for vascular disease. Clin Sci 116(8):621–637

    Article  PubMed  CAS  Google Scholar 

  • Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA 94(12):6474–6479

    Article  PubMed  CAS  Google Scholar 

  • Krolewski AJ, Warram JH, Kahn R, Kahn LI, Kahn CR (1987) Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. New Eng J Med 18:267–273

    Google Scholar 

  • Lachin JM, Genuth S, Nathan DM, Rutledge BN (2007) The hemoglobin glycation index is not an independent predictor of the risk of microvascular complications in the diabetes control and complications trial. Diabetes 56(7):1913–1921 [see comment]

    Article  PubMed  CAS  Google Scholar 

  • Mauer M, Zinman B, Gardiner R, Drummond K, Suissa S, Donnelly S, Strand T, Kramer M, Klein R, Sinaiko A (2002) Ace-i and arbs in early diabetic nephropathy. J Renin Angiotensin Aldosterone Syst 3:262–269

    Article  PubMed  CAS  Google Scholar 

  • Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC, Klein R (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361(1):40–51

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Fu MX, Kurokawa K, de Strihou C, Thorpe SR, Baynes JW (1998) Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia? Kidney Int 54(4):1290–1295

    Article  PubMed  CAS  Google Scholar 

  • Monnier VM (1989) The maillard reaction in aging, diabetes and nutrition. Prog in Clin and Biol Res 304:1–22

    CAS  Google Scholar 

  • Monnier L, Colette C (2006) Contributions of fasting and postprandial glucose to hemoglobin a1c. Endocr Pract 1:42–46 [review] [20 refs]

    Google Scholar 

  • Monnier VM, Sell DR, Genuth S (2005) Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci 1043:567–581 [review] [78 refs]

    Article  PubMed  CAS  Google Scholar 

  • Monnier VM, Sell DR, Dai Z, Nemet I, Collard F, Zhang J (2008) The role of the amadori product in the complications of diabetes. Ann N Y Acad Sci 1126:81–88

    Article  PubMed  CAS  Google Scholar 

  • Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes C, Complications Trial/Epidemiology of Diabetes I, Complications Study Research G (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. New Engl J Med 353(25):2643–2653 [see comment]

    Article  PubMed  Google Scholar 

  • Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B (2008) Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: Update regarding thiazolidinediones: a consensus statement from the american diabetes association and the european association for the study of diabetes. Diabetes Care 31(1):173–175

    Article  PubMed  Google Scholar 

  • Nishikawa T, Edelstein D, Du X, Yamagishi S, Matsumura T, Kaneda Y, Yorek M, Beebe D, Oates P, Hammes H, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404:787–790

    Article  PubMed  CAS  Google Scholar 

  • Niwa T (2008) Biomarker discovery for kidney diseases by mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 870(2):148–153

    Article  PubMed  CAS  Google Scholar 

  • Perkins BA, Krolewski AS (2009) Early nephropathy in type 1 diabetes: the importance of early renal function decline. Curr Opin Nephrol Hypertens 18(3):233–240

    Article  PubMed  CAS  Google Scholar 

  • Pettitt D, Saad M, Bennett P, Nelson R, Knowler W (1990) Familial predisposition to renal disease in two generations of pima indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 33(7):438–443

    Article  PubMed  CAS  Google Scholar 

  • Prager TC, Wilson DJ, Avery GD (1981) Vitreous fluorophotometry: identification of sources of variability. Invest Ophthalmol Vis Sci 21:854–864

    PubMed  CAS  Google Scholar 

  • Rodbard HW, Trence DL, Mechanick JI (2008) Should the recommendation of the american association of clinical endocrinologists for a hemoglobin a1c target of 6.5% be modified? A critical reappraisal of recent studies of intensive glycemic control. Endocr Pract 14(6):791–795

    PubMed  Google Scholar 

  • Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE (2002) Defining the relationship between plasma glucose and hba(1c): Analysis of glucose profiles and hba(1c) in the diabetes control and complications trial. Diabetes Care 25(2):275–278

    Article  PubMed  CAS  Google Scholar 

  • Rosario RF, Prabhakar S (2006) Lipids and diabetic nephropathy. Curr Diab Rep 6(6):455–462 [review] [58 refs]

    Article  PubMed  CAS  Google Scholar 

  • Saaddine JB, Honeycutt AA, Narayan KM, Zhang X, Klein R, Boyle JP (2008) Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United states, 2005–2050. Arch Ophthalmol 126(12):1740–1747

    Article  PubMed  Google Scholar 

  • Seaquist ER, Goetz FC, Rich S, Barbosa J (1989) Familial clustering of diabetic kidney disease: evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320:1161–1165

    Article  PubMed  CAS  Google Scholar 

  • Sell DR, Annunziata L, Monnier VM (1991) Relationship between pentosidine and the complications of long-standing type I diabetes. Diabetes 40(Suppl I):302A

    Google Scholar 

  • Sell DR, Strauch CM, Shen W, Monnier VM (2007) 2-aminoadipic acid is a marker of protein carbonyl oxidation in the aging human skin: effects of diabetes, renal failure and sepsis. Biochem J 404(2):269–277

    Article  PubMed  CAS  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  PubMed  CAS  Google Scholar 

  • Soriano FG, Virag L, Szabo C (2001) Diabetic endothelial dysfunction: Role of reactive oxygen and nitrogen species production and poly(adp-ribose) polymerase activation. J Mol Med 79(8):437–448 [review] [92 refs]

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (1999) Clinical significance of glycation. Clin Lab 45:263–273

    CAS  Google Scholar 

  • Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation end products in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375(Pt 3):581–592

    Article  PubMed  CAS  Google Scholar 

  • Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, Holman RR (1998) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United kingdom prospective diabetes study. Bmj 316(7134):823–828 (ukpds: 23) [comment]

    Article  PubMed  CAS  Google Scholar 

  • Williams M (2010) Diabetic chronic kidney disease/end-stage renal disease: a progress report. Semin Dial 23:129–133

    Article  PubMed  Google Scholar 

  • Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. Biochem J 245:243–250

    PubMed  CAS  Google Scholar 

  • Yan SF, Ramasamy R, Schmidt AM (2009) The receptor for advanced glycation end products (rage) and cardiovascular disease. Expert Rev Mol Med 11:e9

    Article  PubMed  Google Scholar 

  • Yu Y, Thorpe SR, Jenkins AJ, Shaw JN, Sochaski MA, McGee D, Aston CE, Orchard TJ, Silvers N, Peng YG, McKnight JA, Baynes JW, Lyons TJ, The DERG (2006) Advanced glycation end-products and methionine sulphoxide in skin collagen of patients with type 1 diabetes. Diabetologia 49(10):2488–2498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding support was provided by the Juvenile Diabetes Research Foundation (JDRF). The unwavering technical assistance of Scott Howell and Kimberly Russell was also invaluable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Beisswenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beisswenger, P.J. Glycation and biomarkers of vascular complications of diabetes. Amino Acids 42, 1171–1183 (2012). https://doi.org/10.1007/s00726-010-0784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0784-z

Keywords

Navigation