Skip to main content

Advertisement

Log in

From sulfur to homoglutathione: thiol metabolism in soybean

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Sulfur is an essential plant nutrient and is metabolized into the sulfur-containing amino acids (cysteine and methionine) and into molecules that protect plants against oxidative and environmental stresses. Although studies of thiol metabolism in the model plant Arabidopsis thaliana (thale cress) have expanded our understanding of these dynamic processes, our knowledge of how sulfur is assimilated and metabolized in crop plants, such as soybean (Glycine max), remains limited in comparison. Soybean is a major crop used worldwide for food and animal feed. Although soybeans are protein-rich, they do not contain high levels of the sulfur-containing amino acids, cysteine and methionine. Ultimately, unraveling the fundamental steps and regulation of thiol metabolism in soybean is important for optimizing crop yield and quality. Here we review the pathways from sulfur uptake to glutathione and homoglutathione synthesis in soybean, the potential biotechnology benefits of understanding and modifying these pathways, and how information from the soybean genome may guide the next steps in exploring this biochemical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams CA, Rinne RW (1969) Influence of age and sulfur metabolism on ATP sulfurylase activity in the soybean and a survey of selected species. Plant Physiol 44:1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Alvarez C, Calo L, Romero LC, Garcia I, Gotor C (2010) An O-acetylserine(thiol)lyase homolog with l-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis thaliana. Plant Physiol 152:656–669

    Article  PubMed  CAS  Google Scholar 

  • Anderson JW (1990) Sulfur metabolism in plants. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants. Vol. 16, Intermediary nitrogen metabolism. Academic Press, San Diego, pp 327–381

    Google Scholar 

  • Barroso C, Vega JM, Gotor C (1995) A new member of the cytosolic O-acetylserine(thiol)lyase gene family in Arabidopsis thaliana. FEBS Lett 363:1–5

    Article  PubMed  CAS  Google Scholar 

  • Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C (1999) Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40:729–736

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz O, Wirtz M, Wolf A, Kuhlmann J, Hell R (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J Biol Chem 277:30629–30634

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Leustek T (1998) Plant sulfur metabolism––the reduction of sulfate to sulfite. Curr Opin Plant Biol 3:240–244

    Article  Google Scholar 

  • Bick JA, Ashlund F, Chen Y, Leustek T (1998) Glutaredoxin function for the carboxyl terminal domain of the plant type 5′-adenylylsulfate (APS) reductase. Proc Natl Acad Sci USA 95:8404–8409

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein–protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11:251–262

    Article  PubMed  CAS  Google Scholar 

  • Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280:38803–38813

    Article  PubMed  CAS  Google Scholar 

  • Bork C, Schwenn JD, Hell R (1998) Isolation and characterization of a gene for assimilatory sulfite reductase from Arabidopsis thaliana. Gene 212:147–153

    Article  PubMed  CAS  Google Scholar 

  • Brunold C, Suter M, Lavanchy P (1987) Effect of high and low sulfate concentrations on adenosine 5′-phosphosulfate sulfotransferase in Lemna minor L. Plant Physiol 61:342–347

    Article  Google Scholar 

  • Burandt P, Schmidt A, Papenbrock J (2001) Cysteine synthesis and cysteine desulfuration in Arabidopsis plants at different developmental stages and light conditions. Plant Physiol Biochem 39:861–870

    Article  CAS  Google Scholar 

  • Chi-Ham CL, Keaton MA, Cannon GC, Heinhorst S (2002) The DNA-compacting protein DCP68 from soybean chloroplasts is ferredoxin:sulfite reductase and co-localizes with the organellar nucleoid. Plant Mol Biol 49:621–631

    Article  PubMed  CAS  Google Scholar 

  • Chronis D, Krishnan HB (2003) Sulfur assimilation in soybean: molecular cloning and characterization of O-acetylserine(thiol)lyase (cysteine synthase). Crop Sci 43:1819–1827

    Article  CAS  Google Scholar 

  • Chronis D, Krishnan HB (2004) Sulfur assimilation in soybean (Glycine max [L.] Merr.): molecular cloning and characterization of a cytosolic isoform of serine acetyltransferase. Planta 218:417–426

    Article  PubMed  CAS  Google Scholar 

  • Dinkins RD, Reddy MSS, Meurer CA, Yan B, Trick H, Thibaud-Nissen F, Finer JJ, Parrott WA, Collins GB (2001) Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cell Dev Biol Plant 37:742–747

    Article  CAS  Google Scholar 

  • Dominguez-Solis JR, Gutierrez-Alcala G, Vega JM, Romero LC, Gotor C (2001) The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276:9297–9302

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Solis JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476

    Article  PubMed  CAS  Google Scholar 

  • Droux M (2003) Plant serine acetyltransferase: new insights for regulation of sulphur metabolism in plant cells. Plant Physiol Biochem 41:619–627

    Article  CAS  Google Scholar 

  • Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants: structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18:3647–3655

    Article  PubMed  CAS  Google Scholar 

  • Frendo P, Jiménez MJ, Mathieu C, Duret L, Gallesi D, Van de Sype G, Hérouart D, Puppo A (2001) A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiol 126:706–1715

    Article  Google Scholar 

  • Frendo P, Harrison J, Norman C, Hernández-Jiménez MJ, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant Microbe Interact 18:254–259

    Article  PubMed  CAS  Google Scholar 

  • Galant A, Arkus KAJ, Zubieta C, Cahoon RE, Jez JM (2009) Structural basis for evolution of product diversity in soybean glutathione synthesis. Plant Cell 21:3450–3458

    Article  PubMed  CAS  Google Scholar 

  • Gayler KR, Sykes GE (1985) Effects of nutritional stress on the storage proteins of soybeans. Plant Physiol 78:582–585

    Article  PubMed  CAS  Google Scholar 

  • Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Grabau LJ, Blevins DG, Minor HC (1986) Stem infusions enhanced methionine content of soybean storage protein. Plant Physiol 82:1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Gromes R, Hothorn M, Lenherr ED, Rybin V, Scheffzek K, Rausch T (2008) The redox switch of gamma-glutamylcysteine ligase via a reversible monomer–dimer transition is a mechanism unique to plants. Plant J 54:1063–1075

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos FJ, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proc Natl Acad Sci USA 93:13377–13382

    Article  PubMed  CAS  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld Y, Lee S, Lee M, Leustek T, Saito K (2000a) Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana. Gene 248:51–58

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000b) beta-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ (2000) Plant responses to sulfur deficiency and the genetic manipulation of sulfate transporters to improve S-utilization efficiency. J Exp Bot 5:131–138

    Article  Google Scholar 

  • Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20:168–185

    Article  PubMed  CAS  Google Scholar 

  • Heiss S, Schafer HJ, Haag-Kerwer A, Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39:847–857

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Bergmann L (1990) γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180:603–612

    Article  CAS  Google Scholar 

  • Hell R, Hillebrand H (2001) Plant concepts for mineral acquisition and allocation. Curr Opin Biotech 12:161–168

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Bork C, Bogdanova N, Frolov I, Hauschild R (1994) Isolation and characterization of two cDNAs encoding for compartment specific isoforms of O-acetylserine (thiol) lyase from Arabidopsis thaliana. FEBS Lett 351:257–262

    Article  PubMed  CAS  Google Scholar 

  • Herrera K, Cahoon RE, Kumaran S, Jez JM (2007) Reaction mechanism of glutathione synthetase from Arabidopsis thaliana: site-directed mutagenesis of active site residues. J Biol Chem 282:17157–17165

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Lipke J, Altmann T, Höfgen R (1999) Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase (O-acetylserine(thiol)lyase) from Arabidopsis thaliana. Amino Acids 16:113–131

    Article  PubMed  CAS  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651–663

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa M, Nakayama M, Hase T, Knaff DB (2004) Oxidation–reduction properties of maize ferredoxin: sulfite oxidoreductase. Biochim Biophys Acta 1608:140–148

    Article  PubMed  CAS  Google Scholar 

  • Höfgen R, Hesse H (2008) Sulfur and cysteine metabolism. In: Jez JM (ed) Sulfur: a missing link between soils, crops, and nutrition. ASA-CSSA-SSSA Publishing, Madison, pp 83–104

    Google Scholar 

  • Holowach LP, Thompson JF, Madison JT (1984) Effects of exogenous methionine on storage protein composition of soybean cotyledons cultured in vitro. Plant Physiol 74:576–583

    Article  PubMed  CAS  Google Scholar 

  • Hopkins L, Parmar S, Blaszczyk A, Hesse H, Höfgen R, Hawkesford MJ (2005) O-acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato. Plant Physiol 138:433–440

    Article  PubMed  CAS  Google Scholar 

  • Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T, Scheffzek K (2006) Structural basis for the redox control of plant glutamate-cysteine ligase. J Biol Chem 281:27557–27565

    Article  PubMed  CAS  Google Scholar 

  • Imsande J (2001) Selection of soybean mutants with increased concentrations of seed methionine and cysteine. Crop Sci 41:510–515

    Article  CAS  Google Scholar 

  • Inoue K, Noji M, Saito K (1999) Determination of the sites required for the allosteric inhibition of serine acetyltransferase by l-cysteine in plants. Eur J Biochem 266:220–227

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Cahoon RE (2004) Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana. J Biol Chem 279:42726–42731

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Fukagawa NK (2008) Plant sulfur compounds and human health. In: Jez JM (ed) Sulfur: a missing link between soils, crops, and nutrition. ASA-CSSA-SSSA Publishing, Madison, pp 281–292

    Google Scholar 

  • Jez JM, Krishnan HB (2009) Sulfur assimilation and cysteine biosynthesis in soybean seeds: towards engineering sulfur amino acid content. In: Krishnan HB (ed) Modification of seed composition to promote health and nutrition. ASA-CSSA-SSSA Publishing, Madison, pp 249–261

    Google Scholar 

  • Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279:33463–33470

    Article  PubMed  CAS  Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ, Hell R (2000) Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253:237–247

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabdiopsis. Plant Cell 16:2693–2704

    Article  PubMed  CAS  Google Scholar 

  • Kawashima CG, Berkowitz O, Hell R, Noji M, Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137:220–230

    Article  PubMed  CAS  Google Scholar 

  • Kerley MS, Allee GL (2003) Modifications in soybean seed composition to enhance animal feed use and value: moving from a dietary ingredient to a functional dietary component. AgBioForum 6:14–17

    Google Scholar 

  • Kim WS, Krishnan HB (2004) Expression of an 11 kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant Biotech J 2:199–210

    Article  CAS  Google Scholar 

  • Kim H, Hirai MY, Hayashi H, Chino M, Naito S, Fujiwara T (1999) Role of O-acetyl-l-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta 209:282–289

    Article  PubMed  CAS  Google Scholar 

  • Klapheck S (1988) Homoglutathione: isolation, quantification, and occurrence in legumes. Physiol Plant 74:727–732

    Article  CAS  Google Scholar 

  • Klapheck S, Latus C, Bergmann L (1987) Localization of glutathione synthetase and distribution of glutathione in leaf cells of Pisum savitum L. Plant Physiol 131:123–131

    CAS  Google Scholar 

  • Klapheck S, Fliegner W, Zimmer I (1994) Hydroxymethyl-phytochelatins [(gamma-glutamylcysteine) n -serine] are metal-induced peptides of the Poaceae. Plant Physiol 104:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Klonus D, Höfgen R, Willmitzer L, Riesmeier JW (1994) Isolation and characterization of two cDNA clones encoding ATP-sulfurylases from potato by complementation of a yeast mutant. Plant J 6:105–112

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97:479–495

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Buchert T, Fritz G, Suter M, Weber M, Benda R, Schaller J, Feller U, Schurmann P, Schunemann V, Trautwein AX, Kroneck PM, Brunold C (2001) Plant adenosine 5′-phosphosulfate reductase is a novel iron-sulfur protein. J Biol Chem 276:42881–42886

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Mugford SG, Matthewman C, Koprivova A (2009) Plant sulfate assimilation genes: redundancy versus specialization. Plant Cell Rep 28:1769–1780

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Suter M, op den Camp R, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746

    Article  PubMed  CAS  Google Scholar 

  • Kredich NM, Becker MA, Tomkins GM (1969) Purification and characterization of cysteine synthase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem 244:2423–2439

    Google Scholar 

  • Krishnan HB (2005) Engineering soybean for enhanced sulfur amino acid content. Crop Sci 45:454–461

    Article  CAS  Google Scholar 

  • Krishnan HB (2008) Improving the sulfur-containing amino acids of soybeans to enhance its nutritional value in animal feed. In: Jez JM (ed) Sulfur: a missing link between soils, crops, and nutrition. ASA-CSSA-SSSA Publishing, Madison, pp 235–249

    Google Scholar 

  • Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Höfgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ 32:349–367

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Sato K, Yamada T, Maitani T (2000) Phytochelatin homologs induced in hairy roots of horseradish. Phytochemistry 53:239–245

    Article  PubMed  CAS  Google Scholar 

  • Kumaran S, Jez JM (2007) Thermodynamics of the interaction between O-acetylserine sulfhydrylase and the C-terminus of serine acetyltransferase. Biochemistry 46:5586–5594

    Article  PubMed  CAS  Google Scholar 

  • Kumaran S, Yi H, Krishnan HB, Jez JM (2009) Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions. J Biol Chem 284:10268–10275

    Article  PubMed  CAS  Google Scholar 

  • Lai KW, Yau CP, Tse YC, Jiang L, Yip WK (2009) Heterologous expression analyses of rice OsCAS in Arabidopsis and in yeast provide evidence for its roles in cyanide detoxification rather than in cysteine synthesis in vivo. J Exp Bot 60:993–1008

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Leustek T (1998) APS kinase from Arabidopsis thaliana: genomic organization, expression, and kinetic analysis of the recombinant enzyme. Biochem Biophys Res Commun 247:171–175

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Murillo M, Cervantes M (1994) Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol 105:897–902

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Meyer S, Essig JS, Liu Y, Schapaugh MA, Muthukrishnan S, Hainline BE, Trick HN (2005) High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Mol Breed 16:11–20

    Article  CAS  Google Scholar 

  • Lillig CH, Schiffmann S, Berndt C, Berken A, Tischka R, Schwenn JD (2001) Molecular and catalytic properties of Arabidopsis thaliana adenylyl sulfate (APS)-kinase. Arch Biochem Biophys 392:303–310

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Yoo BC, Lee JY, Pan W, Harmon AC (2006) Calcium-regulated phosphorylation of soybean serine acetyltransferase in response to oxidative stress. J Biol Chem 281:27405–27415

    Article  PubMed  CAS  Google Scholar 

  • Livingstone D, Beilinson V, Kalyaeva M, Schmidt MA, Herman EM, Nielsen NC (2007) Reduction of protease inhibitor activity by expression of a mutant Bowman-Birk gene in soybean seed. Plant Mol Biol 64:387–408

    Article  CAS  Google Scholar 

  • Logan HM, Cathala N, Grignon C, Davidian JC (1996) Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family: expression studies in yeast and in relation to plant sulfur nutrition. J Biol Chem 271:12227–12233

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Martin MC, Becana M, Romero LC, Gotor C (2008) Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiol 147:562–572

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Droux M, Martin J, Douce R (1990) Localization of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach leaves. Plant Physiol 94:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • MacRae IJ, Segel IH (1999) Adenosine 5′-phosphosulfate (APS) kinase: diagnosing the mechanism of substrate inhibition. Arch Biochem Biophys 361:277–282

    Article  PubMed  CAS  Google Scholar 

  • Masada M, Fukushima K, Tamura G (1975) Cysteine synthase from rape leaves. Biochem J 77:1107–1115

    CAS  Google Scholar 

  • Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Sanchez-Fernandez R, van Montagu M, Inze D (1998) Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci USA 95:12049–12054

    Article  PubMed  CAS  Google Scholar 

  • Meuwly P, Thibault P, Schwan AL, Rauser WE (1995) Three families of thiol peptides are induced by cadmium in maize. Plant J 7:391–400

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Article  PubMed  CAS  Google Scholar 

  • Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M (2000) Glutathione and homoglutathione synthetases of legume nodules: cloning, expression, and subcellular localization. Plant Physiol 124:1192–1381

    Article  Google Scholar 

  • Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flügge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S (2009) Disruption of adenosine-5′-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell 21:910–927

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  PubMed  CAS  Google Scholar 

  • Murillo M, Leustek T (1995) Adenosine-5′-triphosphate sulfurylase from Arabidopsis thaliana and Escherichia coli are functionally equivalent but structurally and kinetically divergent: nucleotide sequence of two adenosine-5′-triphosphate sulfuryalse cDNAs from Arabidopsis thaliana and analysis of a recombinant enzyme. Arch Biochem Biophys 323:195–204

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27–32

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–32745

    Article  PubMed  CAS  Google Scholar 

  • Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol 126:973–980

    Article  PubMed  CAS  Google Scholar 

  • Olsen LR, Huang B, Vetting MW, Roderick SL (2004) Structure of serine acetyltransferase in complex with CoA and its cysteine feedback inhibitor. Biochemstry 43:6013–6019

    Article  CAS  Google Scholar 

  • Osslund T, Chandler C, Segel I (1982) ATP sulfurylase from higher plants: purification and preliminary kinetics studies of the cabbage leaf enzyme. Plant Physiol 70:39–45

    Article  PubMed  CAS  Google Scholar 

  • Panthee DR, Pantalone VR, Sams CE, Saxton AM, West DR, Orf JH, Killam AS (2006) Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor Appl Genet 112:546–553

    Article  PubMed  CAS  Google Scholar 

  • Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB (2006) Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch Biochem Biophys 450:20–29

    Article  PubMed  CAS  Google Scholar 

  • Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB (2008) The role of 5′-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, gene expression, and kinetic characterization. Phytochemistry 69:356–364

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  PubMed  CAS  Google Scholar 

  • Reuveny Z, Dougall DK, Trinity PM (1980) Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells. Proc Natl Acad Sci USA 11:6670–6672

    Article  Google Scholar 

  • Rolland N, Droux M, Douce R (1992) Subcellular distribution of O-acetylserine(thiol)lyase in cauliflower (Brassica oleracea L.) inflorescence. Plant Physiol 98:927–935

    Article  PubMed  CAS  Google Scholar 

  • Rouached H, Secco D, Arpat AB (2009) Getting the most sulfate from soil: regulation of sulfate uptake transporters in Arapidopsis. J Plant Phys 166:893–902

    Article  CAS  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  PubMed  CAS  Google Scholar 

  • Rouleau M, Marsolai F, Richard M, Nicolle L, Voigt B (1999) Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. J Biol Chem 274:10930–20925

    Article  Google Scholar 

  • Ruffet ML, Lebrun M, Droux M, Douce R (1995) Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. Eur J Biochem 227:500–509

    Article  PubMed  CAS  Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195

    PubMed  CAS  Google Scholar 

  • Saito K, Miura N, Yamazaki M, Hirano H, Murakoshi I (1992) Molecular cloning and bacterial expression of cDNA encoding a plant cysteine synthase. Proc Natl Acad Sci USA 89:8078–8082

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Tatsuguchi K, Murakoshi I, Hirano H (1993) cDNA cloning and expression of cysteine synthase B localized in chloroplasts of Spinacia oleracea. FEBS Lett 324:247–252

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Kurosawa M, Tatsuguchi K, Takagi Y, Murakoshi I (1994) Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase]. Plant Physiol 106:887–895

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schmidt A, Trebst A (1969) The mechanism of photosynthetic sulfate reduction by isolated chloroplasts. Biochim Biophys Acta 180:529–535

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schroeder AC, Zhu C, Yanamadala SR, Cahoon RE, Arkus KAJ, Wachsstock L, Bleeke J, Krishnan HB, Jez JM (2010) Threonine-insensitive homoserine dehydrogenase from soybean: genomic organization, kinetic characterization, and in vivo activity. J Biol Chem 285:827–834

    Article  PubMed  CAS  Google Scholar 

  • Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5′-adenylylphosphosulfate (APS) reductase. Proc Natl Acad Sci USA 93:13383–13388

    Article  PubMed  CAS  Google Scholar 

  • Seubert PA, Hoang L, Renosto F, Segel IH (1983) ATP sulfurylase from Penicillium chrysogenum: measurements of the true specific activity of an enzyme subject to potent product inhibition and a reassessment of the kinetic mechanism. Arch Biochem Biophys 225:679–691

    Article  PubMed  CAS  Google Scholar 

  • Sexton PJ, Shibles RM (1999) Activity of ATP sulfurylase in reproductive soybean. Crop Sci 39:131–135

    Article  CAS  Google Scholar 

  • Sexton PJ, Naeve SL, Paek NC, Shibles R (1998) Sulfur availability, cotyledon nitrogen:sulfur ratio, and relative abundance of seed storage proteins of soybean. Crop Sci 38:983–986

    Article  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structure and biosynthesis. Plant Cell 7:945–956

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109

    Article  PubMed  CAS  Google Scholar 

  • Sirko A, Blaszczyk A, Liszewska F (2004) Overproduction of SAT and/or OASTL in transgenic plants: a survey of effects. J Exp Bot 55:1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Skipsey M, Davis BG, Edwards R (2005) Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays). Biochem J 391:567–574

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92:9373–9377

    Article  PubMed  CAS  Google Scholar 

  • Streit LG, Beach LR, Register JC, Jung R, Fehr WR (2001) Association of the Brazil nut protein gene and Kunitz trypsin inhibitor alleles with soybean protease inhibitor activity and agronomic traits. Crop Sci 41:1757–1760

    Article  CAS  Google Scholar 

  • Sunarpi, Anderson JW (1996) Distribution and redistribution of sulfur supplied as [35S] sulfate to roots during vegetative growth of soybean. Plant Physiol 110:1151–1157

  • Sunarpi, Anderson JW (1997) Allocation of S in generative growth of soybean. Plant Physiol 114:687–693

  • Suter M, von Ballmoos P, Kopriva S, den Camp RO, Schaller J, Kuhlemeier C, Schurmann P, Brunold C (2000) Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes. J Biol Chem 275:930–936

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida Engler J et al (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Klaff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Townsend JA, Thomas LA (1994) Factors which influence the Agrobacterium-mediated transformation of soybean. J Cell Biochem 18A:78

    Google Scholar 

  • Tsakraklides G, Martin M, Chalam R, Tarczynski MC, Schmidt A, Leustek T (2002) Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5′-adenylylsulfate reductase from Pseudomonas aeruginosa. Plant J 32:879–889

    Article  PubMed  CAS  Google Scholar 

  • Van K, Kim DH, Cai CM, Kim MY, Shin JH, Graham MA, Shoemaker RC, Choi BS, Yang TJ, Lee SH (2008) Sequence level analysis of recently duplicated regions in soybean [Glycine max (L.) Merr.] genome. DNA Res 15:93–102

    Article  PubMed  CAS  Google Scholar 

  • Varin L, Marsolais F, Richard M, Rouleau M (1997) Sulfation and sulfotransferases 6: biochemistry and molecular biology of plant sulfotransferases. FASEB J 11:517–525

    PubMed  CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krahenbuhl U, den Camp RO, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adensone 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740

    Article  PubMed  CAS  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K (2008a) Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. Plant Physiol 146:310–320

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008b) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20:2484–2496

    Article  PubMed  CAS  Google Scholar 

  • Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Nakamura T, Harada E, Koizumi N, Sano H (1999) Differential accumulation of transcripts encoding sulfur assimilation enzymes upon sulfur and/or nitrogen deprivation in Arabidopsis thaliana. Biosci Biotech Biochem 4:762–766

    Article  Google Scholar 

  • Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and beta-cyanoalanine synthase. Plant Cell Physiol 41:465–476

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM (2010) Sensing sulfur conditions: simple to complex biochemical regulatory mechanisms in plant thiol metabolism. Mol Plant 3:269–279

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Ashikari T, Tanaka Y, Kusumi T, Hase T (1998) Molecular characterization of tobacco sulfite reductase: enzyme purification, gene cloning, and gene expression analysis. J Biochem 124:615–621

    PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T, Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Plant Physiol 122:887–894

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Meng Q, Gai J, Yu D (2008a) Cloning and functional characterization of an O-acetylserine(thiol)lyase-encoding gene in wild soybean (Glycine soja). Mol Biol Rep 35:527–534

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Meng Q, Zhang M, Huang F, Gai J, Yu D (2008b) Characterization of O-acetylserine(thiol)lyase-encoding genes reveals their distinct but cooperative expression in cysteine synthesis of soybean [Glycine max (L.) Merr.]. Plant Mol Biol Rep 26:277–291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the US Department of Agriculture (NRI-2005-02518) and the National Science Foundation grant (MCB-0824492) to J.M.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Jez.

Additional information

This article is published as part of the Special Issue on plant amino acids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, H., Ravilious, G.E., Galant, A. et al. From sulfur to homoglutathione: thiol metabolism in soybean. Amino Acids 39, 963–978 (2010). https://doi.org/10.1007/s00726-010-0572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0572-9

Keywords

Navigation