Skip to main content

Thiolomics: Molecular Mechanisms of Thiol-Cascade in Plant Growth and Nutrition

  • Chapter
  • First Online:
PlantOmics: The Omics of Plant Science

Abstract

Growing plants have a constitutive demand for thiol (sulfur) to synthesize protein, sulfolipid, and other essential sulfur (S)-containing molecules for growth. The uptake and subsequent distribution of sulfate is regulated in response to demand and environmental factors. Sulfate transport consists of both constitutive and sulfur nutrition-dependent regulated transport. The acquisition of sulfur by plants has become an increasingly important concern for the agriculture due to the decreasing trends of S-emissions from industrial sources and the consequent limitation of inputs from deposition. The recognition of the importance of sulfate for plant growth and vigor and hence crop yield, as well as the nutritional importance of sulfur for human and animal diets, has increasingly been recognized. Cysteine synthesis in plants is a fundamental process for protein biosynthesis and all anabolic pathways that require reduced sulfur. Cysteine is the first committed molecule in plant metabolism that contains both sulfur and nitrogen, and, thus, the regulation of its biosynthesis is of utmost importance for the synthesis of a number of essential metabolites in plant pathways. Cysteine is incorporated into proteins and glutathione directly or serves as a sulfur donor for the synthesis of S-containing compounds such as methionine and its derivatives S-adenosylmethionine and S-methylmethionine and many secondary compounds. Furthermore, cysteine acts as a general catalyst in redox reactions through the nucleophilic properties of its sulfur atom, utilizing dithiol–disulfide interchange, as displayed in the thioredoxin and the glutaredoxin systems. Molecular characterization involving transcriptomics, proteomics, and metabolomics profiling in major crops like rice, barley, wheat, maize, and legumes along with model plant Arabidopsis thaliana revealed that sulfate uptake, distribution, and reductive assimilation are regulated in fine-tune depending on sulfur status and demand and that this cascade is integrated with plant photosynthesis, nutrient transports, antioxidant defense system, hormonal signaling, kinase cascades, carbohydrate metabolism, and during plants’ experiences with different biotic and abiotic stresses. This cascade can be manipulated in favor of enhanced plant growth and nutritional benefits—as, for example, effort has been initiated in food and feed legumes (chickpeas, narrow-leafed lupin, soybeans) and other plants with enhanced S-containing amino acids, threonine, glutathione, protein quality, protease inhibitors, and trace elements and with lysine, protein content, and compositions in cereal grains. This emerging prospect can be ushered by using latest cutting-edge functional genomics tools and better understanding of plant thiol-metabolism from source (soil) to sink (grains) in diverse arenas of “thiolomics.” In this chapter, the comprehensive knowledge generated in this area has been compiled and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN Jr (2008) Transcriptional responses of Arabidopsis thaliana plants to As(V) stress. BMC Plant Biol 8:87

    Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    CAS  PubMed  Google Scholar 

  • Anderson JW, Fitzgerald MA (2001) Physiological and metabolic origin of sulphur for the synthesis of seed storage proteins. J Plant Physiol 158:447–456

    CAS  Google Scholar 

  • Anjum NA, Gill SS, Umar S, Ahmad I, Duarte AC, Pereira E (2012) Improving growth and productivity of Oleiferous Brassicas under changing environment: significance of nitrogen and sulphur nutrition, and underlying mechanisms. Sci World J 2012, Article ID 657808. doi:10.1100/2012/657808

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796

    Google Scholar 

  • Aragao FJL, Barros LMG, de Sousa MV, de Sa MFG, Almeida ERP, Gander ES, Rech EL (1999) Expression of a methionine rich storage albumin from the Brazil nut (Bertholletia excelsa HBK, Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet Mol Biol 22:445–449

    CAS  Google Scholar 

  • Aravind L, Koonin EV (2000) The STAS domain: a link between anion transporters and anti sigma-factor antagonists. Curr Biol 10:53–55

    Google Scholar 

  • Astolfi S, Zuchi S (2013) Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiol Plant 35:175–181

    CAS  Google Scholar 

  • Awazuhara M, Kim H, Goto DB, Matsui A, Hayashi H, Chino M, Kim S-G, Naito S, Fujiwara T (2002) A 235 bp region from a nutritionally regulated soybean specific gene promoter can confer its sulfur and nitrogen response to a constitutive promoter in aerial tissues of Arabidopsis thaliana. Plant Sci 163:75–82

    CAS  Google Scholar 

  • Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C (1999) Salt specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40:729–736

    CAS  PubMed  Google Scholar 

  • Birke H, Müller SJ, Rother M, Zimmer AD, Hoernstein SNW, Wesenberg D, Wirtz M, Krauss G-J, Ralf Reski R, Hell R (2012) The relevance of compartmentation for cysteine synthesis in phototrophic organisms. Protoplasma 249(Suppl 2):S147–S155. doi:10.1007/s00709-012-0411-9

    PubMed  Google Scholar 

  • Blum R, Meyer KC, Wünschmann J, Lendzian KJ, Grill E (2010) Cytosolic action of phytochelatin synthase. Plant Physiol 153:159–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bolchi A, Petrucco S, Tenca PL, Foroni C, Ottonello S (1999) Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific downregulation by L-cysteine. Plant Mol Biol 39:527–537

    CAS  PubMed  Google Scholar 

  • Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834

    CAS  PubMed  Google Scholar 

  • Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280:38803–38813

    CAS  PubMed  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004a) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773

    CAS  PubMed  Google Scholar 

  • Buchner P, Prosser I, Hawkesford MJ (2004b) Phylogeny and expression of paralogous and orthologous sulphate transporter genes in diploid and hexaploid wheats. Genome 47:526–534

    CAS  PubMed  Google Scholar 

  • Buchner P, Parmar S, Kriegel A, Carpentier M, Hawkesford MJ (2010) The sulfate transporter family in wheat: tissue-specific gene expression in relation to nutrition. Mol Plant 3:374–389

    CAS  PubMed  Google Scholar 

  • Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M (2007) The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49:238–249

    PubMed  Google Scholar 

  • Cabannes E, Buchner P, Broadley MR, Hawkesford MJ (2011) A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol 157:2227–2239

    PubMed Central  CAS  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    CAS  PubMed  Google Scholar 

  • Chiaiese P, Ohkama-Ohtsu N, Molvig L, Godfree R, Dove H, Hocart C, Fujiwara T, Higgins TJ, Tabe LM (2004) Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. J Exp Bot 55:1889–1901

    CAS  PubMed  Google Scholar 

  • Chronis D, Krishnan HB (2004) Sulfur assimilation in soybean (Glycine max [L.] Merr.): molecular cloning and characterization of a cytosolic isoform of serine acetyltransferase. Planta 218:417–426

    CAS  PubMed  Google Scholar 

  • Davidian J-C, Kopriva S (2010) Regulation of sulfate uptake and assimilation—the same or not the same. Mol Plant 3:314–325

    CAS  PubMed  Google Scholar 

  • Demidov D, Horstmann C, Meixner M, Pickardt T, Saalbach I, Galili G, Muentz K (2003) Additive effects of the feed-back insensitive bacterial aspartate kinase and the Brazil nut 2S albumin on the methionine content of transgenic narbon bean (Vicia narbonensis L.). Mol Breed 11:187–201

    CAS  Google Scholar 

  • Dietz K-J, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dinkins RD, Reddy MSS, Meurer CA, Yan B, Trick H, Thibaud-Nissen F, Finer JJ, Parrott WA, Collins GB (2001) Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cell Dev Biol Plant 37:742–747

    CAS  Google Scholar 

  • Dixon DP, Edwards R (2009) Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J Biol Chem 284:21249–21256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Domínguez-Solís JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476

    PubMed  Google Scholar 

  • Droux M (2003) Plant serine acetyltransferase: new insights for regulation of sulphur metabolism in plant cells. Plant Physiol Biochem 41:619–627

    CAS  Google Scholar 

  • Dubousset L, Abdallah M, Desfeux AS, Etienne P, Meuriot F, Hawkesford MJ, Gombert J, Ségura R, Bataillé M-P, Rezé S, Bonnefoy J, Ameline AF, Ourry A, Dily FL, Avice JC (2009) Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability. J Exp Bot 60:3239–3253

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duquesnoy I, Goupil P, Nadaud I, Branlard G, Piquet-Pissaloux A, Ledoigt G (2009) Identification of Agrostis tenuis leaf proteins in response to As(V) and As(III) induced stress using a proteomics approach. Plant Sci 176:206–213

    CAS  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401:169–186

    CAS  PubMed  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) Auxin Response Factor1 and Auxin Response Factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    CAS  PubMed  Google Scholar 

  • Falkenberg B, Witt I, Zanor MI, Steinhauser D, Mueller-Roeber B, Hesse H, Hoefgen R (2008) Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including sulphur metabolism. J Exp Bot 59:2831–2846

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fatma M, Iqbal M, Khan R, Masood A, Khan NA (2013) Coordinate changes in assimilatory sulfate reduction are correlated to salt tolerance: involvement of phytohormones. Annu Rev Res Biol 3(3):267–295

    Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzpatrick KL, Tyerman SD, Kaiser BN (2008) Molybdate transport through the plant sulfate transporter SHST1. FEBS Lett 582:1508–1513

    CAS  PubMed  Google Scholar 

  • Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18:3647–3655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frendo P, Harrison J, Norman C, Hernández-Jiménez MJ, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant Microbe Interact 18:254–259

    CAS  PubMed  Google Scholar 

  • Galant A, Preuss ML, Cameron JC, Jez JM (2011) Plant glutathione biosynthesis: diversity in biochemical regulation and reaction products. Front Plant Sci 2:45. doi:10.3389/fpls.2011. 00045

    PubMed Central  PubMed  Google Scholar 

  • Galili G, Amir R, Hoefgen R, Hesse H (2005) Improving the levels of essential amino acids and sulfur metabolites in plants. Biol Chem 386:817–831

    CAS  PubMed  Google Scholar 

  • Gómez LD, Vanacker H, Buchner P, Noctor G, Foyer CH (2004) Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling. Plant Physiol 134:1662–1671

    PubMed Central  PubMed  Google Scholar 

  • Gupta DK, Tripathi RD, Mishra S, Srivastava S, Dwivedi S, Rai UN, Yang XE, Huanj H, Inouhe M (2008) Arsenic accumulation in root and shoot vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J Environ Biol 29:281–286

    CAS  PubMed  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hacham Y, Matityahu I, Schuster G, Amir R (2008) Overexpression of mutated forms of aspartate kinase and cystathionine gamma-synthase in tobacco leaves resulted in the high accumulation of methionine and threonine. Plant J 54:260–271

    CAS  PubMed  Google Scholar 

  • Hagan ND, Upadhyaya N, Tabe LM, Higgins TJV (2003) The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J 34:1–11

    CAS  PubMed  Google Scholar 

  • Hanada K, Hirano H (2004) Interaction of a 43-kDa receptor-like protein with a 4-kDa hormone-like peptide in soybean. Biochemistry 43:12105–12112

    CAS  PubMed  Google Scholar 

  • Harada E, Coi Y-E, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661

    CAS  Google Scholar 

  • Hartmann T, Hönicke P, Wirtz M, Hell R, Rennenberg H, Kopriva S (2004) Regulation of sulphate assimilation by glutathione in poplars (Populus tremula x P. alba) of wild type and overexpressing γ-glutamylcysteine synthetase in the cytosol. J Exp Bot 55:837–845

    CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2000) Plant responses to sulfur deficiency and the genetic manipulation of sulfate transporters to improve S utilization efficiency. J Exp Bot 5:131–138

    Google Scholar 

  • Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family: redundancy or specialization? Physiol Plant 117:115–163

    Google Scholar 

  • Hawkesford MJ, Wray JL (2000) Molecular genetics of sulphur assimilation. Adv Bot Res 33:159–223

    CAS  Google Scholar 

  • Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20:168–185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heiss S, Schafer HJ, Haag-Kerwer A, Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39:847–857

    CAS  PubMed  Google Scholar 

  • Hell R, Bergmann L (1990) γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180:603–612

    CAS  PubMed  Google Scholar 

  • Hell R, Wirtz M (2011) Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0154. doi:10.1199/tab.0154

    PubMed Central  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    CAS  PubMed  Google Scholar 

  • Herschbach C, Teuber M, Eiblmeier M, Ehlting B, Ache P, Polle A, Schnitzler J-P, Rennenberg H (2010) Changes in sulphur metabolism of grey poplar (Populus × canescens) leaves during salt stress: a metabolic link to photorespiration. Tree Physiol 30:1161–1173

    CAS  PubMed  Google Scholar 

  • Hesse H, Lipke J, Altmann T, Höfgen R (1999) Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase (O-acetylserine(thiol)lyase) from Arabidopsis thaliana. Amino Acids 16:113–131

    CAS  PubMed  Google Scholar 

  • Hesse H, Nikiforova V, Gakière B, Hoefgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulfur metabolism. J Exp Bot 55:1283–1292

    CAS  PubMed  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulphur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulphur nutrition. Plant J 33:651–663

    CAS  PubMed  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirai MY, Klein M, Fujikawa Y et al (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–25595

    CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 10:6478–6483

    Google Scholar 

  • Höfgen R, Hesse H (2008) Sulfur and cysteine metabolism. In: Jez JM (ed) Sulfur: a missing link between soils, crops, and nutrition. ASA-CSSA-SSSA Publishing, Madison, pp 83–104

    Google Scholar 

  • Hopkins L, Parmar S, Blaszczyk A, Hesse H, Höfgen R, Hawkesford MJ (2005) O-acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato. Plant Physiol 138:433–440

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hossain Z, Komatsu S (2012) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310

    PubMed Central  PubMed  Google Scholar 

  • Howarth J, Fourcroy P, Davidian J-C, Smith FW, Hawkesford MJ (2003) Cloning of two contrasting high-affinity sulphate transporters from tomato induced by low sulphate and infection by the vascular pathogen Verticillium dahliae. Planta 218:58–64

    CAS  PubMed  Google Scholar 

  • Howarth JR, Parmar S, Barraclough PB, Hawkesford MJ (2009) A sulphur deficiency-induced gene sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status. Plant Biotechnol J 7:200–209

    CAS  PubMed  Google Scholar 

  • Huang S, Frizzi A, Malvar TM (2009) Engineering high lysine corn. In: Krishnan H (ed) Modification of seed composition to promote health and nutrition. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 233–248

    Google Scholar 

  • Huang T-L, Fu S-F, Thuy Nguyen QT, Lin C-Y, Chen Y-C, Huang H-J (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol. doi:10.1007/s11103-012-9969-z

    PubMed Central  Google Scholar 

  • Hubberten HM, Klie S, Caldana C, Degenkolbe T, Willmitzer L, Höefgen R (2012) Additional role of O-acetylserine as a sulfur status-independent regulator during plant growth. Plant J 70:666–677

    CAS  PubMed  Google Scholar 

  • Indriolo E, Na G, Ellis D, Salt DE, Banksb JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iqbal N, Masood A, Iqbal M, Khan R, Asgher M, Fatma M, Khan NA (2013) Cross-talk between sulfur assimilation and ethylene signaling in plants. Plant Signal Behav 8(1):e22478

    PubMed Central  PubMed  Google Scholar 

  • Jez JM, Krishnan HB (2009) Sulfur assimilation and cysteine biosynthesis in soybean seeds: towards engineering sulfur amino acid content. In: Krishnan HB (ed) Modification of seed composition to promote health and nutrition. ASA-CSSA-SSSA Publishing, Madison, pp 249–261

    Google Scholar 

  • Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279:33463–33479

    CAS  PubMed  Google Scholar 

  • Jing HC, Hebeler R, Oeljeklaus S, Sitek B, Stühler K, Meyer HE, Sturre MJ, Hille J, Warscheid B, Dijkwel PP (2008) Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. Plant Biol 1:85–98

    Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    CAS  PubMed  Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ, Hell R (2000) Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253:237–247

    CAS  PubMed  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawashima CG, Berkowitz O, Hell R, Noji M, Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137:220–230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulfur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    CAS  PubMed  Google Scholar 

  • Khan TA, Mazid M (2011) Nutritional significance of sulphur in pulse cropping system. Biol Med 3(2):114–133

    CAS  Google Scholar 

  • Khan MS, Haas FH, Allboje Samami A, Moghaddas Gholami A, Bauer A, Fellenberg K, Reichelt M, Hansch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22:1216–1231

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim WS, Krishnan HB (2004) Expression of an 11 kDa methionine rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant Biotechnol J 2:199–210

    CAS  PubMed  Google Scholar 

  • Kim WS, Chronis D, Juergens M, Schroeder AC, Hyun SW, Jez JM, Krishnan HB (2012) Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman–Birk protease inhibitor in seeds. Planta 235:13–23

    CAS  PubMed  Google Scholar 

  • Klapheck S, Fliegner W, Zimmer I (1994) Hydroxymethyl-phytochelatins [(gamma-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Plant Physiol 104:1325–1332

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97:479–495

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kopriva S, Buchert T, Fritz G, Suter M, Weber M, Benda R, Schaller J, Feller U, Schurmann P, Schunemann V, Trautwein AX, Kroneck PM, Brunold C (2001) Plant adenosine 5ʹ-phosphosulfate reductase is a novel iron-sulfur protein. J Biol Chem 276:42881–42886

    CAS  PubMed  Google Scholar 

  • Kopriva S, Mugford SG, Matthewman C, Koprivova A (2009) Plant sulfate assimilation genes: redundancy versus specialization. Plant Cell Rep 28:1769–1780

    CAS  PubMed  Google Scholar 

  • Kopriva S, Mugford SG, Baraniecka P, Lee BR, Matthewman CA, Koprivova A (2012) Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Front Plant Sci 3:1–9

    Google Scholar 

  • Koprivova A, Suter M, op den Camp R, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koprivova A, North KA, Kopriva S (2008) Complex signaling network in regulation of adenosine 5′-phosphosulfate reductase by salt stress in Arabidopsis roots. Plant Physiol 146:1408–1420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koralewska A, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2008) Regulation of sulfate uptake, expression of the sulfate transporters sultr1;1 and sultr1;2, and APS reductase in Chinese cabbage (Brassica pekinensis) as affected by atmospheric H2S nutrition and sulfate deprivation. Funct Plant Biol 35:318–327

    CAS  Google Scholar 

  • Krishnan HB (2008) Improving the sulfur-containing amino acids of soybeans to enhance its nutritional value in animal feed. In: Jez JM (ed) Sulfur: a missing link between soils, crops, and nutrition. ASA-CSSA-SSSA Publishing, Madison, pp 235–249

    Google Scholar 

  • Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Höfgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ 32:349–367

    CAS  PubMed  Google Scholar 

  • Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Trivedi P (2011a) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct Integr Genomics 11:259–273

    CAS  PubMed  Google Scholar 

  • Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A (2011b) Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem Toxicol 49:589–600

    CAS  PubMed  Google Scholar 

  • Kumaran S, Yi H, Krishnan HB, Jez JM (2009) Assembly of the cysteine synthase complex and the regulatory role of protein protein interactions. J Biol Chem 284:10268–10275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kutz A, Müller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30:95–106

    CAS  PubMed  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass AD, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem translocated compound. Plant J 18:89–95

    CAS  PubMed  Google Scholar 

  • Lee S, Leustek T (1998) APS kinase from Arabidopsis thaliana: genomic organization, expression, and kinetic analysis of the recombinant enzyme. Biochem Biophys Res Commun 247:171–175

    CAS  PubMed  Google Scholar 

  • Lee MS, Huang TF, Toro-Ramos T, Fraga M, Last RL, Jander G (2008) Reduced activity of Arabidopsis thaliana HMT2, a methionine biosynthetic enzyme, increases seed methionine content. Plant J 54:310–320

    CAS  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    CAS  PubMed  Google Scholar 

  • Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004a) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:1–20

    CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder J, Balish R, Meagher R (2004b) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium sensitivity. Plant Cell Physiol 45:1787–1797

    CAS  PubMed  Google Scholar 

  • Li Z, Meyer S, Essig JS, Liu Y, Schapaugh MA, Muthukrishnan S, Hainline BE, Trick HN (2005) High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Mol Breed 16:11–20

    Google Scholar 

  • Liao D, Pajak A, Karcz AR, Chapman BP, Sharpe AG, Austin RS, Datla R, Dhaubhadel S, Marsolais F (2012) Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins. J Exp Bot 63:6283–6295

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liao D, Cram D, Sharpe AG, Marsolais F (2013) Transcriptome profiling identifies candidate genes associated with the accumulation of distinct sulfur γ-glutamyl dipeptides in Phaseolus vulgaris and Vigna mungo seeds. Front Plant Sci 4:60

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31:587–601

    CAS  PubMed  Google Scholar 

  • Liu F, Yoo BC, Lee JY, Pan W, Harmon AC (2006) Calcium regulated phosphorylation of soybean serine acetyltransferase in response to oxidative stress. J Biol Chem 281:27405–27415

    CAS  PubMed  Google Scholar 

  • Livingstone D, Beilinson V, Kalyaeva M, Schmidt MA, Herman EM, Nielsen NC (2007) Reduction of protease inhibitor activity by expression of a mutant Bowman-Birk gene in soybean seed. Plant Mol Biol 64:387–408

    Google Scholar 

  • Lopez-Berenguera C, Carvajala M, Garcea-Viguerab C, Alcaraz CF (2007) Nitrogen, phosphorus, and sulfur nutrition in Broccoli plants grown under salinity. J Plant Nutr 30:1855–1870

    Google Scholar 

  • Lovati MR, Manzoni C, Castiglioni S, Parolari A, Magni C, Duranti M (2012) Lupin seed γ-conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells. Br J Nutr 107:67–73

    PubMed  Google Scholar 

  • Lyubetsky VA, Seliverstov AV, Zverkov OA (2013) Transcription regulation of plastid genes involved in sulfate transport in Viridiplantae. BioMed Res Int 2013, Article ID 413450, 6 pages. http://dx.doi.org/10.1155/2013/413450

  • Magni C, Sessa F, Accardo E, Vanoni M, Morazzoni P, Scarafoni A, Duranti M (2004) Conglutin γ, a lupin seed protein, binds insulin in vitro and reduces plasma glucose levels of hyperglycemic rats. J Nutr Biochem 15:646–650

    CAS  PubMed  Google Scholar 

  • Marsolais F, Pajak A, Yin F, Taylor M, Gabriel M, Merino DM, Ma V, Kameka A, Vijayan P, Pham H, Huang S, Rivoal J, Bett K, Hernández-Sebastià C, Liu Q, Bertrand A, Chapman R (2010) Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway. J Proteomics 73:1587–1600

    CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Takahashi H (2005) Transcriptional regulation of Sultr1 and Sultr1;2 in Arabidopsis roots. In: Saito K, De Kok LJ, Stuhlen I, Hawkesford MJ, Schnug E, Sirko A, Rennenberg H (eds) Sulfur transport and assimilation in plants in the postgenomic era. Backhuys Publishers, Leiden, pp 43–441

    Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation/dephosphorylation circuit for transcriptional regulation. Plant Cell Physiol 45:340–345

    CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    CAS  PubMed  Google Scholar 

  • Matamoros MA, Clemente MR, Sato S, Asamizu E, Tabata S, Ramos J, Moran JF, Stiller J, Gresshoff PM, Becana M (2003) Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus. Mol Plant Microbe Interact 16:1039–1046

    CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    PubMed Central  PubMed  Google Scholar 

  • Meyer AJ, Rausch T (2008) Biosynthesis, compartmentation and cellular functions of glutathione in plant cells. In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms, vol 27, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 161–184

    Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou J-P, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant system complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    CAS  PubMed  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJ (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci USA 94:8393–8398

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M (2000) Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization. Plant Physiol 124:1381–1392

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    CAS  PubMed  Google Scholar 

  • Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flügge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S (2009) Disruption of adenosine-5ʹ-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell 21:910–927

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    CAS  PubMed  Google Scholar 

  • Na G, Salt DE (2011) Differential regulation of serine acetyltransferase is involved in nickel hyperaccumulation in Thlaspi goesingense. J Biol Chem 286:40423–40432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Höfgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Daub CO, Hesse H, Willmitzer L, Hoefgen R (2005a) Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulfur stress response. J Exp Bot 56:1887–1896

    CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005b) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Bielecka M, Gakière B, Krueger S, Rinder J, Kempa S, Morcuende R, Scheible W-R, Hesse H, Hoefgen R (2006) Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids 30:173–183

    CAS  PubMed  Google Scholar 

  • Nocito F, Lancilli C, Crema B, Fourcroy P, Davidian J-C, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    CAS  PubMed  Google Scholar 

  • Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol 126:973–980

    PubMed Central  CAS  PubMed  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Novero AU, Taylor Paul WJ, Ford R (2008) Isolation and characterization of o-acetylserine (thiol) lyase, an enzyme of the cysteine biosynthetic pathway of vetch (Vicia sativa L.). Aust J Crop Sci 2:96–104

    CAS  Google Scholar 

  • Ohkama N, Takei K, Sakakibara H, Hayashi H, Yoneyama T, Fujiwara T (2002) Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana. Plant Cell Physiol 43:1493–1501

    CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Kasajima I, Fujiwara T, Naito S (2004) Isolation and characterization of an Arabidopsis mutant that overaccumulates O-acetyl-L-Ser. Plant Physiol 136:3209–3222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okushima Y, Mitina I, Quach HL, Theologis A (2005a) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43:29–46

    CAS  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K et al (2005b) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Padovese R, Kina SM, Barros RMC, Borelli P, Marquez UML (2001) Biological importance of gamma-glutamyl-S-methylcysteine of kidney bean (Phaseolus vulgaris L.). Food Chem 73:291–297

    Google Scholar 

  • Pandey M, Srivastava AK, D’Souza SF, Penna S (2013) Thiourea, a ROS scavenger, regulates source-to-sink relationship to enhance crop yield and oil content in Brassica juncea (L.). PLoS One 8(9):e73921. doi:10.1371/journal.pone.0073921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parmar S, Buchner P, Hawkesford MJ (2007) Leaf developmental stage affects sulfate depletion and specific sulfate transporter expression during sulfur deprivation in Brassica napus L. Plant Biol 9:647–653

    CAS  PubMed  Google Scholar 

  • Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108

    PubMed Central  PubMed  Google Scholar 

  • Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB (2006) Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch Biochem Biophys 450:20–29

    CAS  PubMed  Google Scholar 

  • Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB (2008) The role of 5ʹ-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, gene expression, and kinetic characterization. Phytochemistry 69:356–364

    CAS  PubMed  Google Scholar 

  • Queval G, Thominet D, Vanacker H, Miginiac-Maslow M, Gakière B, Noctor G (2009) H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol Plant 2:344–356

    CAS  PubMed  Google Scholar 

  • Rae AL, Smith FW (2002) Localization of expression of a high affinity sulfate transporter in barley roots. Planta 215:565–568

    CAS  PubMed  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B, Bag M, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and anti- oxidant system. Chemosphere 82:986–995

    CAS  PubMed  Google Scholar 

  • Requejo R, Tena M (2006) Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Proteomics 6:S156–S162

    PubMed  Google Scholar 

  • Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rother M, Krauss GJ, Grass G, Wesenberg D (2006) Sulphate assimilation under Cd stress in Physcomitrella patens-combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29:1801–1811

    CAS  PubMed  Google Scholar 

  • Rouached H, Secco D, Arpat AB (2009) Getting the most sulfate from soil: regulation of sulfate uptake transporters in Arabidopsis. J Plant Physiol 166:893–902

    CAS  PubMed  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    CAS  PubMed  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    CAS  PubMed  Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur containing amino acids. Curr Opin Plant Biol 3:188–195

    CAS  PubMed  Google Scholar 

  • Scarafoni A, Ronchi A, Duranti M (2010) γ-Conglutin, the Lupinus albus XEGIP-like protein, whose expression is elicited by chitosan, lacks of the typical inhibitory activity against GH12 endo-glucanases. Phytochemistry 71:142–148

    CAS  PubMed  Google Scholar 

  • Schiavon M, Pittarello M, Pilon-Smits EAH, Wirtz M, Hell R, Malagoli M (2012) Selenate and molybdate alter sulfate transport and assimilation in Brassica juncea L. Czern.: implications for phytoremediation. Environ Exp Bot 75:41–51

    CAS  Google Scholar 

  • Schippers JH, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR, Dijkwel PP (2008) The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. Plant Cell 20:2909–2925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma I (2013) Arsenic-induced oxidative stress and antioxidant defense system of Pisum sativum and Pennisetum typhoides: a comparative study. Res J Biotechnol 8:48–56

    CAS  Google Scholar 

  • Shibagaki N, Grossman AR (2006) The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. J Biol Chem 281:22964–22973

    CAS  PubMed  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    CAS  PubMed  Google Scholar 

  • Shirzadian-Khorramabad R, Jing H-C, Everts GE, Schippers JHM, Hille J, Dijkwel PP (2010) A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis. BMC Plant Biol 10:80

    PubMed Central  PubMed  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, van den Berg PJ, Belcher AR, Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12:875–884

    CAS  PubMed  Google Scholar 

  • Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    CAS  PubMed  Google Scholar 

  • Srivastava AK, Ramaswamy NK, Suprasanna P, D’Souza SF (2010) Genome-wide analysis of thiourea-modulated salinity stress-responsive transcripts in seeds of Brassica juncea: identification of signalling and effector components of stress tolerance. Ann Bot 106:663–674

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296

    CAS  Google Scholar 

  • Sun X, Sun XM, Yang ZM, Li SQ, Wang J, Wang SH (2005) Expression of Brassica napus γ-glutamylcysteine synthetase, low- and high-affinity sulfate transporters in response to excess cadmium. J Integr Plant Biol 47:243–250

    CAS  Google Scholar 

  • Sung DY, Kim TH, Komives EA, Mendoza-Cózatl DG, Schroeder JI (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59:802–812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suter M, von Ballmoos P, Kopriva S, den Camp RO, Schaller J, Kuhlemeier C, Schurmann P, Brunold C (2000) Adenosine 5ʹ-phosphosulfate sulfotransferase and adenosine 5ʹ-phosphosulfate reductase are identical enzymes. J Biol Chem 275:930–936

    CAS  PubMed  Google Scholar 

  • Tabe LM, Droux M (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol 128:1137–1148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tabe LM, Venables I, Grootemaat A, Lewis D (2003) Sulfur transport and assimilation in developing embryos of chickpea (Cicer arietinum). In: Davidian J-C, Grill D, de Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants. Backhuys Publishers, Leiden, pp 335–337

    Google Scholar 

  • Tabe L, Wirtz M, Molvig L, Droux M, Hell R (2010) Overexpression of serine acetyltransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume. J Exp Bot 61:721–733

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JA, Engler G, Van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–11107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Klaff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    CAS  PubMed  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Yamaya T (2003) T-DNA insertion mutagenesis of sulfate transporters in Arabidopsis. In: Davidian J-C, Grill D, de Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants. Backhuys Publishers, Leiden, pp 339–340

    Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    CAS  PubMed  Google Scholar 

  • Talukdar D (2008) Cytogenetic characterization of seven different primary tetrasomics in grass pea (Lathyrus sativus L.). Caryologia 61:402–410

    Google Scholar 

  • Talukdar D (2009a) Dwarf mutations in grass pea (Lathyrus sativus L.): origin, morphology, inheritance and linkage studies. J Genet 88(2):165–175

    PubMed  Google Scholar 

  • Talukdar D (2009b) Recent progress on genetic analysis of novel mutants and aneuploid research in grass pea (Lathyrus sativus L.). Afr J Agric Res 4:1549–1559

    Google Scholar 

  • Talukdar D (2010a) Reciprocal translocations in grass pea (Lathyrus sativus L.). Pattern of transmission, detection of multiple interchanges and their independence. J Hered 101:169–176

    CAS  PubMed  Google Scholar 

  • Talukdar D (2010b) Cytogenetic characterization of induced autotetraploids in grass pea (Lathyrus sativus L.). Caryologia 63:62–72

    Google Scholar 

  • Talukdar D (2010c) Fluorescent-banded karyotype analysis and identification of chromosomes in three improved Indian varieties of grass pea (Lathyrus sativus L.). Chromosome Sci 13:3–10

    Google Scholar 

  • Talukdar D (2011a) Cytogenetic analysis of a novel yellow flower mutant carrying a reciprocal translocation in grass pea (Lathyrus sativus L.). J Biol Res-Thessaloniki 15:123–134

    Google Scholar 

  • Talukdar D (2011b) Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. J Med Plants Res 5(16):3619–3628

    CAS  Google Scholar 

  • Talukdar D (2011c) Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination and seedling stages. Legume Res 34(4):232–241

    Google Scholar 

  • Talukdar D (2011d) The aneuploid switch: extra-chromosomal effect on antioxidant defense through trisomic shift in Lathyrus sativus L. Indian J Fundam Appl Life Sci 1(4):263–273

    Google Scholar 

  • Talukdar D (2011e) Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.) differing in salt stress responses. Int J Curr Res 2(1):46–54

    Google Scholar 

  • Talukdar D (2011f) Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L. during germination and early seedling growth. Curr Res J Biol Sci 3(2):116–123

    CAS  Google Scholar 

  • Talukdar D (2012a) Ascorbate deficient semi-dwarf asfL1 mutant of Lathyrus sativus exhibits alterations in antioxidant defense. Biol Plant 56(4):675–682

    CAS  Google Scholar 

  • Talukdar D (2012b) Flavonoid-deficient mutants in grass pea (Lathyrus sativus L.): genetic control, linkage relationships, and mapping with aconitase and S nitrosoglutathione reductase isozyme loci. Sci World J 2012, Article ID 345983, 11 pages. doi:10.1100/2012/345983

  • Talukdar D (2012c) A glutathione-overproducing mutant in grass pea (Lathyrus sativus L.): alterations in glutathione content, modifications in antioxidant defense response to cadmium stress and genetic analysis using primary trisomic. Int J Recent Sci Res 3(4):234–243

    Google Scholar 

  • Talukdar D (2012d) An induced glutathione-deficient mutant in grass pea (Lathyrus sativus L.): modifications in plant morphology, alteration in antioxidant activities and increased sensitivity to cadmium. Biorem Biodiv Bioavail 6:75–86

    Google Scholar 

  • Talukdar D (2012e) Exogenous calcium alleviates the impact of cadmium-induced oxidative stress in Lens culinaris Medic. Seedlings through modulation of antioxidant enzyme activities. J Crop Sci Biotechnol 15(4):325–334

    Google Scholar 

  • Talukdar D (2012f) Total flavonoids, phenolics, tannins and antioxidant activity in seeds of lentil and grass pea. Int J Phytomedicine 4(4):537–542

    CAS  Google Scholar 

  • Talukdar D (2012g) Modulation of plant growth and leaf biochemical parameters in grass pea (Lathyrus sativus L) and fenugreek (Trigonella foenum-graecum L.) exposed to NaCl treatments. Indian J Fundam Appl Life Sci 2(3):20–28

    Google Scholar 

  • Talukdar D (2012h) Changes in neurotoxin, β-N-OXALYL- L α, β-diaminopropionic acid (β-ODAP), level in grass pea (Lathyrus sativus L.) genotypes under arsenic treatments. J Appl Biosci 38(2):148–153

    CAS  Google Scholar 

  • Talukdar D (2013a) Bioaccumulation and transport of arsenic in different genotypes of lentil (Lens culinaris Medik.). Int J Pharma Bio Sci 4(1):B694–B701

    Google Scholar 

  • Talukdar D (2013b) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19(1):69–79

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talukdar D (2013c) Studies on antioxidant enzymes in Canna indica plant under copper stress. J Environ Biol 34:93–98

    PubMed  Google Scholar 

  • Talukdar D (2013d) Bioaccumulation, growth and antioxidant defense responses of Leucaena species differing in arsenic tolerance. Int J Bot Res 3(1):1–18

    Google Scholar 

  • Talukdar D (2013e) Allelopathic effects of Lantana camara L. on Lathyrus sativus L.: oxidative imbalance and cytogenetic consequences. Allelopathy J 31(1):71–90

    Google Scholar 

  • Talukdar D (2013f) Selenium priming selectively ameliorates weed– induced phytotoxicity by modulating antioxidant defense components in lentil (Lens culinaris Medik.) and grass pea (Lathyrus sativus L.). Annu Rev Res Biol 3(3):195–212

    Google Scholar 

  • Talukdar D (2013g) Cytogenetics of a reciprocal translocation integrating distichous pedicel and tendril-less leaf mutations in Lathyrus sativus L. Caryologia 66(1):21–30

    Google Scholar 

  • Talukdar D (2013h) Arsenic-induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60(5):652–660

    CAS  Google Scholar 

  • Talukdar D (2013i) Arsenic exposure modifies Fusarium wilt tolerance in grass pea (Lathyrus sativus L.) genotypes through modulation of antioxidant defense response. J Plant Sci Mol Breed 2(4), 12 pages. doi:http://dx.doi.org/10.7243/2050-2389-2-4

  • Talukdar D (2013j) Balanced hydrogen peroxide metabolism is central in controlling NaCl-induced oxidative stress in medicinal legume, fenugreek (Trigonella foenum-graecum L.). Biochem Mol Biol 1(2):34–43

    Google Scholar 

  • Talukdar D (2013k) Plant growth and leaf antioxidant metabolism of four elite grass pea (Lathyrus sativus) genotypes, differing in arsenic tolerance. Agric Res 2(4):330–339

    CAS  Google Scholar 

  • Talukdar D (2013l) Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress. J Nat Sci Biol Med 4(2):396–402

    PubMed Central  PubMed  Google Scholar 

  • Talukdar D (2013m) Growth responses and leaf antioxidant metabolism of grass pea (Lathyrus sativus L.) genotypes under salinity stress. ISRN Agron 2013, Article ID 284830, 15 pages. doi:http://dx.doi.org/10.1155/2013/284830

  • Talukdar D, Biswas AK (2005) Induced seed coat colour mutations and their inheritance in grass pea (Lathyrus sativus L.). Indian J Genet 65:135–136

    Google Scholar 

  • Talukdar D, Biswas AK (2007a) Seven different primary trisomics in grass pea (Lathyrus sativus L.). I Cytogenetic characterization. Cytologia 72(4):385–396

    Google Scholar 

  • Talukdar D, Biswas AK (2007b) Inheritance of flower and stipule characters in different induced mutant lines of grass pea (Lathyrus sativus L.). Indian J Genet Plant Breed 67(4):396–400

    Google Scholar 

  • Talukdar D, Talukdar T (2013a) Catalase-deficient mutants in lentil (Lens culinaris Medik.): perturbations in morpho-physiology, antioxidant redox and cytogenetic parameters. Int J Agric Sci Res 3(2):197–212

    Google Scholar 

  • Talukdar D, Talukdar T (2013b) Superoxide-dismutase deficient mutants in common beans (Phaseolus vulgaris L.): genetic control, differential expressions of isozymes, and sensitivity to arsenic. BioMed Res Int, ePub 8/8/13, 2013, Article ID 782450, 11 pages. doi:http://dx.doi.org/10.1155/2013/782450

  • Talukdar T, Talukdar D (2013c) Response of antioxidative enzymes to arsenic-induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill. J Nat Sci Biol Med 4(2):383–388

    PubMed Central  PubMed  Google Scholar 

  • Talukdar D, Talukdar T (2013d) Coordinated response of sulfate transport, cysteine biosynthesis and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma. doi:10.1007/s00709-013-0586-8

    PubMed  Google Scholar 

  • Talukdar T, Talukdar D (2014) Leaf photosynthesis and antioxidant defense in male and hermaphrodite tree of a critically endangered legume, Gymnocladus assamicus Kanjilal ex P.C. Kanjilal. Plant Gene Trait 5(1):1–10

    Google Scholar 

  • Talukdar D, Biswas SC, Biswas AK (2002) An induced flower colour mutant in grass pea (Lathyrus sativus L.). Indian J Genet 62:162

    Google Scholar 

  • Tan Q, Zhang L, Grant J, Cooper P, Tegeder M (2010) Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol 154:1886–1896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor M, Chapman R, Beyaert R, Hernández-Sebastià C, Marsolais F (2008) Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine. J Agric Food Chem 56:5647–5654

    CAS  PubMed  Google Scholar 

  • Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA 104:18807–18812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Traverso JA, Pulido A, Rodríguez-García MI, Alché JD (2013) Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives. Front Plant Sci 4:465

    PubMed Central  PubMed  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD (2012a) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198

    CAS  PubMed  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Chakrabarty D, Prabodh K, Trivedi PK, Adhikari B (2012b) Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ Sci Pollut Res. doi:10.1007/s11356-012-1205-5

    Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK (2012c) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275

    PubMed Central  CAS  PubMed  Google Scholar 

  • van de Mortel JE, Schat H, Moerland PD, Loren V, van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324

    PubMed  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EA (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krahenbuhl U, den Camp RO, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5ʹ-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740

    CAS  PubMed  Google Scholar 

  • Vaz Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147

    Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montsgu M, Inzé D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vidmar JJ, Tagmount A, Cathala N, Touraine B, Davidian J-C (2000) Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Lett 475:65–69

    CAS  PubMed  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    CAS  PubMed  Google Scholar 

  • Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K (2008a) Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. Plant Physiol 146:310–320

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008b) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20:2484–2496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe M, Hubberten H-M, Saito K, Hoefgen R (2010) General regulatory patterns of plant mineral nutrient depletion as revealed by serat quadruple mutants disturbed in cysteine synthesis. Mol Plant 3:438–466

    CAS  PubMed  Google Scholar 

  • Wawrzyńska A, Kurzyk A, Mierzwińska M, Płochocka D, Wieczorek G, Sirko A (2013) Direct targeting of Arabidopsis cysteine synthase complexes with synthetic polypeptides to selectively deregulate cysteine synthesis. Plant Sci 207:148–157

    PubMed  Google Scholar 

  • Wei S, Ma LQ, Saha U, Mathews S, Sundaram S, Rathinasabapathi B, Zhou Q (2010) Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environ Pollut 158:1530–1535

    CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot (Lond) 100:111–118

    CAS  Google Scholar 

  • Wickett NJ, Forrest LL, Budke JM, Shaw B, Goffinet B (2011) Frequent pseudogenization and loss of the plastid-encoded sulfate-transport gene cysA throughout the evolution of liverworts. Am J Bot 98:1263–1275

    PubMed  Google Scholar 

  • Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798

    CAS  PubMed  Google Scholar 

  • Wirtz M, Birke H, Heeg C, Mueller C, Hosp F, Throm C, Koenig S, Feldman-Salit A, Rippe K, Petersen G, Wade RC, Rybin V, Scheffzek K, Hell R (2010) Structure and function of the hetero-oligomeric cysteine synthase complex in plants. J Biol Chem 285:32810–32817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wirtz M, Beard KF, Lee CP, Boltz A, Schwarzlander M, Fuchs C, Meyer AJ, Heeg C, Sweetlove LJ, Ratcliffe RG, Hell R (2012) Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants. J Biol Chem 287:27941–27947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Zhao Q, Gao L, Yu X-M, Fang P, Oliver DJ, Xiang C-B (2010) Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis. J Exp Bot 61:3407–3422

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Nakamura T, Harada E, Koizumi N, Sano H (1999) Differential accumulation of transcripts encoding sulfur assimilation enzymes upon sulfur and/or nitrogen deprivation in Arabidopsis thaliana. Biosci Biotechnol Biochem 63:762–766

    CAS  PubMed  Google Scholar 

  • Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM (2010) Sensing sulfur conditions: simple to complex biochemical regulatory mechanisms in plant thiol metabolism. Mol Plant 3:269–279

    CAS  PubMed  Google Scholar 

  • Yin F, Pajak A, Chapman R, Sharpe A, Huang S, Marsolais F (2011) Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins. BMC Genomics 12:268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida S, Tamaoki M, Ioki M, Ogawa D, Sato Y, Aono M, Kubo A, Saji S, Saji H, Satoh S, Nakajima N (2009) Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiol Plant 136:284–298

    CAS  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis root. Plant J 29:465–473

    CAS  PubMed  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1;3, mediates redistribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:378–388

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshizawa T, Shimizu T, Yamabe M, Taichi M, Nishiuchi Y, Shichijo N, Unzai S, Hirano H, Sato M, Hashimoto H (2011) Crystal structure of basic 7S globulin, a xyloglucan-specific endo-β-1,4-glucanase inhibitor protein-like protein from soybean lacking inhibitory activity against endo-β-glucanase. FEBS J 278:1944–1954

    CAS  PubMed  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Meng Q, Zhang M, Huang F, Gai J, Yu D (2008) Characterization of O-acetylserine(thiol)lyase-encoding genes reveals their distinct but cooperative expression in cysteine synthesis of soybean [Glycine max (L.) Merr.]. Plant Mol Biol Rep 26:277–291

    CAS  Google Scholar 

  • Zhao FJ, Stroud JL, Khan MA, McGrath SP (2012) Arsenic translocation in rice investigated using radioactive73As tracer. Plant Soil 350:413–442

    CAS  Google Scholar 

  • Zuber H, Davidian JC, Aubert G, Aimé D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K (2010) The seed composition of arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol 154:913–926

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Talukdar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Talukdar, D., Talukdar, T. (2015). Thiolomics: Molecular Mechanisms of Thiol-Cascade in Plant Growth and Nutrition. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2172-2_17

Download citation

Publish with us

Policies and ethics