Skip to main content
Log in

The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Serine is required for cellular and tissue growth and is particularly important in the immature brain where it acts as a crucial neurotrophic factor. In this study, the levels of amino acids and enzymes in the l-serine biosynthetic pathway were examined in the forebrain, cerebellum, liver, and kidney after the exposure of mice to protein-restricted diets. The levels of l-serine, d-serine, and l-serine-O-phosphate were quantified by HPLC and quantitative Western blotting was used to measure changes in protein levels of five enzymes in the pathway. The l-serine biosynthetic enzyme phosphoserine phosphatase was strongly upregulated, while the serine degradative enzymes serine racemase and serine dehydratase were downregulated in the livers and kidneys of mice fed low (6%) or very low (2%) protein diets for 2 weeks compared with mice fed a normal diet (18% protein). No changes in these enzymes were seen in the brain. The levels of l-serine increased in the livers of mice fed 2% protein; in contrast, d-serine levels were reduced below the limit of detection in the livers of mice given either the 6 or 2% diets. d-Serine is a co-agonist at the NMDA class of glutamate receptors; no alterations in NMDA-R1 subunit expression were observed in liver or brain after protein restriction. These findings demonstrate that the expression of l-serine synthetic and degradative enzymes display reciprocal changes in the liver and kidney to increase l-serine and decrease d-serine levels under conditions of protein restriction, and that the brain is insulated from such changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achouri Y, Robbi M, Van Schaftingen E (1999) Role of cysteine in the dietary control of the expression of 3-phosphoglycerate dehydrogenase in rat liver. Biochem J 344(Pt 1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Anderson DD, Stover PJ (2009) SHMT1 and SHMT2 are functionally redundant in nuclear De novo thymidylate biosynthesis. PLoS One 4:e5839

    Article  PubMed  Google Scholar 

  • Antflick JE, Vetiska S, Baizer JS, Yao Y, Baker GB, Hampson DR (2009) l-Serine-O-phosphate in the central nervous system. Brain Res 1300:1–13

    Google Scholar 

  • Balan L, Foltyn VN, Zehl M, Dumin E, Dikopoltsev E, Knoh D, Ohno Y, Kihara A, Jensen ON, Radzishevsky IS, Wolosker H (2009) Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc Natl Acad Sci USA 106:7589–7594

    Article  CAS  PubMed  Google Scholar 

  • Collet JF, Stroobant V, Van Schaftingen E (1999) Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J Biol Chem 274:33985–33990

    Article  CAS  PubMed  Google Scholar 

  • de Koning TJ (2006) Treatment with amino acids in serine deficiency disorders. J Inherit Metab Dis 29:347–351

    Article  PubMed  Google Scholar 

  • de Koning TJ, Klomp LW (2004) Serine-deficiency syndromes. Curr Opin Neurol 17:197–204

    Article  PubMed  Google Scholar 

  • de Koning TJ, Snell K, Duran M, Berger R, Poll-The BT, Surtees R (2003) l-Serine in disease and development. Biochem J 371:653–661

    Article  PubMed  Google Scholar 

  • De La Rosa J, Stipanuk MH (1985) Evidence for a rate-limiting role of cysteinesulfinate decarboxylase activity in taurine biosynthesis in vivo. Comp Biochem Physiol B 81:565–571

    Article  Google Scholar 

  • Fallon HJ, Hackney EJ, Byrne WL (1966) Serine biosynthesis in rat liver. Regulation of enzyme concentration by dietary factors. J Biol Chem 241:4157–4167

    CAS  PubMed  Google Scholar 

  • Fell DA, Snell K (1988) Control analysis of mammalian serine biosynthesis. Feedback inhibition on the final step. Biochem J 256:97–101

    CAS  PubMed  Google Scholar 

  • Fuchs SA, Dorland L, der Velden MG, Hendriks M, Klomp LW, Berger R, de Koning TJ (2006) d-Serine in the developing human central nervous system. Ann Neurol 60:476–480

    Article  PubMed  Google Scholar 

  • Furuya S (2008) An essential role for de novo biosynthesis of l-serine in CNS development. Asia Pac J Clin Nutr 17(Suppl 1):312–315

    CAS  PubMed  Google Scholar 

  • Furuya S, Tabata T, Mitoma J, Yamada K, Yamasaki M, Makino A, Yamamoto T, Watanabe M, Kano M, Hirabayashi Y (2000) l-Serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons. Proc Natl Acad Sci USA 97:11528–11533

    Article  CAS  PubMed  Google Scholar 

  • Gietzen DW, Hao S, Anthony TG (2007) Mechanisms of food intake repression in indispensable amino acid deficiency. Annu Rev Nutr 27:63–78

    Article  CAS  PubMed  Google Scholar 

  • Grant SL, Shulman Y, Tibbo P, Hampson DR, Baker GB (2006) Determination of d-serine and related neuroactive amino acids in human plasma by high-performance liquid chromatography with fluorimetric detection. J Chromatogr B Analyt Technol Biomed Life Sci 844:278–282

    Article  CAS  PubMed  Google Scholar 

  • Guynn RW, Merrill DK, Lund K (1986) The reactions of the phosphorylated pathway of l-serine biosynthesis: thermodynamic relationships in rat liver in vivo. Arch Biochem Biophys 245:204–211

    Article  CAS  PubMed  Google Scholar 

  • Hart CE, Race V, Achouri Y, Wiame E, Sharrard M, Olpin SE, Watkinson J, Bonham JR, Jaeken J, Matthijs G, Van Schaftingen E (2007) Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am J Hum Genet 80:931–937

    Article  CAS  PubMed  Google Scholar 

  • Hawkinson JE, costa-Burruel M, Ta ND, Wood PL (1997) Novel phosphoserine phosphatase inhibitors. Eur J Pharmacol 337:315–324

    Article  CAS  PubMed  Google Scholar 

  • Hester G, Stark W, Moser M, Kallen J, Markovic-Housley Z, Jansonius JN (1999) Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 Å resolution: comparison of the unligated enzyme and a complex with alpha-methyl-l-glutamate. J Mol Biol 286:829–850

    Article  CAS  PubMed  Google Scholar 

  • Kraus JP, Le K, Swaroop M, Ohura T, Tahara T, Rosenberg LE, Roper MD, Kozich V (1993) Human cystathionine beta-synthase cDNA: sequence, alternative splicing and expression in cultured cells. Hum Mol Genet 2:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AH, Roder JC (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Szebenyi DM, Anguera MC, Thiel DJ, Stover PJ (2001) Lack of catalytic activity of a murine mRNA cytoplasmic serine hydroxymethyltransferase splice variant: evidence against alternative splicing as a regulatory mechanism. Biochemistry 40:4932–4939

    Article  CAS  PubMed  Google Scholar 

  • Lowry M, Hall DE, Hall MS, Brosnan JT (1987) Renal metabolism of amino acids in vivo: studies on serine and glycine fluxes. Am J Physiol 252:F304–F309

    CAS  PubMed  Google Scholar 

  • Lund K, Merrill DK, Guynn RW (1985) The reactions of the phosphorylated pathway of l-serine biosynthesis: thermodynamic relationships in rabbit liver in vivo. Arch Biochem Biophys 237:186–196

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane AJ, Liu X, Perry CA, Flodby P, Allen RH, Stabler SP, Stover PJ (2008) Cytoplasmic serine hydroxymethyltransferase regulates the metabolic partitioning of methylenetetrahydrofolate but is not essential in mice. J Biol Chem 283:25846–25853

    Article  CAS  PubMed  Google Scholar 

  • Mauron J, Mottu F, Spohr G (1973) Reciprocal induction and repression of serine dehydratase and phosphoglycerate dehydrogenase by proteins and dietary-essential amino acids in rat liver. Eur J Biochem 32:331–342

    Article  CAS  PubMed  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931

    Article  CAS  PubMed  Google Scholar 

  • Nagao K, Bannai M, Seki S, Mori M, Takahashi M (2009) Adaptational modification of serine and threonine metabolism in the liver to essential amino acid deficiency in rats. Amino Acids 36:555–562

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Kimura H, Miura S (1967) Crystallization and characteristics of serine dehydratase from rat liver. Biochem Biophys Res Commun 28:359–364

    Article  CAS  PubMed  Google Scholar 

  • Narkewicz MR, Thureen PJ, Sauls SD, Tjoa S, Nikolayevsky N, Fennessey PV (1996) Serine and glycine metabolism in hepatocytes from mid gestation fetal lambs. Pediatr Res 39:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Y, Shikata N, Furuhata Y, Kimura T, Takahashi M (2008) Characterization of dietary protein-dependent amino acid metabolism by linking free amino acids with transcriptional profiles through analysis of correlation. Physiol Genomics 34:315–326

    Article  CAS  PubMed  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    Article  CAS  PubMed  Google Scholar 

  • Rauw GR, Grant SL, Labrie V, Roder JC, Antflick JE, Hampson DR, Baker GB (2009) Determination of l-serine-O-phosphate (l-SOP) in brain tissue using high performance liquid chromatography and flurimetric detection. Submitted

  • Rogers QR, Leung PM (1973) The influence of amino acids on the neuroregulation of food intake. Fed Proc 32:1709–1719

    CAS  PubMed  Google Scholar 

  • Schell MJ (2004) The N-methyl d-aspartate receptor glycine site and d-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 359:943–964

    Article  CAS  PubMed  Google Scholar 

  • Shleper M, Kartvelishvily E, Wolosker H (2005) d-Serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 25:9413–9417

    Article  CAS  PubMed  Google Scholar 

  • Snell K, Fell DA (1990) Metabolic control analysis of mammalian serine metabolism. Adv Enzyme Regul 30:13–32

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH, Londono M, Lee JI, Hu M, Yu AF (2002) Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J Nutr 132:3369–3378

    CAS  PubMed  Google Scholar 

  • Stover PJ, Chen LH, Suh JR, Stover DM, Keyomarsi K, Shane B (1997) Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem 272:1842–1848

    Article  CAS  PubMed  Google Scholar 

  • Veiga-da-Cunha M, Collet JF, Prieur B, Jaeken J, Peeraer Y, Rabbijns A, Van Schaftingen E (2004) Mutations responsible for 3-phosphoserine phosphatase deficiency. Eur J Hum Genet 12:163–166

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725

    Article  CAS  PubMed  Google Scholar 

  • Xue HH, Fujie M, Sakaguchi T, Oda T, Ogawa H, Kneer NM, Lardy HA, Ichiyama A (1999) Flux of the l-serine metabolism in rat liver. The predominant contribution of serine dehydratase. J Biol Chem 274:16020–16027

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Tanaka T, Noguchi T (1996) The effect of a high-protein diet on cystathionine beta-synthase activity and its transcript levels in rat liver. J Nutr Sci Vitaminol (Tokyo) 42:589–593

    CAS  Google Scholar 

  • Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y, Watanabe M (2001) 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21:7691–7704

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Patrick Stover for the antibody to SHMT. This research was funded through an operating grant to DRH and GBB from the Canadian Institutes for Health Research (#MOP81179), and a graduate student scholarship to JEA from the Natural Sciences and Engineering Research Council of Canada. The expert technical assistance of Ms. Gail Rauw is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Richard Hampson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2009_387_MOESM1_ESM.tif

Expression of the NMDA-R1 receptor subunit in mice fed the 18% or 2% protein diets. No significant changes were detected in NMDA-R1 expression in forebrain, liver, or kidney tissue. In both the liver and kidney, a high degree of variability in NMDA-R1 expression was observed in individual mice irrespective of the diet consumed. Values represent means ± SEM from 4 mice for each group. (TIFF 30789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antflick, J.E., Baker, G.B. & Hampson, D.R. The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice. Amino Acids 39, 145–153 (2010). https://doi.org/10.1007/s00726-009-0387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0387-8

Keywords

Navigation