Skip to main content
Log in

Binding specificity of the l-arginine transport systems in mouse macrophages and human cells overexpressing the cationic amino acid transporter hCAT-1

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The uptake of l-arginine into mouse peritoneal macrophages can be inhibited by numerous amino acids and derivatives. Kinetic studies showed an almost entirely competitive inhibition for both cationic and neutral amino acids and derivatives suggesting that the comparison of their binding specificity by using a quantitative structure-activity relationship (QSAR) study is reasonable. The properties of the most efficient inhibitors were the following: the length of the aliphatic side chain, a general structural similarity to l-arginine (>0.79), cationic character, l-configuration, the presence of an α-amino group (with a mean pKa of 9.41), the van der Waals volume (mean 225 Å3) and a low logP value (mean: −2.99). The significance of four other descriptors (neutral character, presence and the pKa of an α-carboxyl group, and the presence of a modified guanidino group) is much lower. Similar results were obtained for the hCAT-1 cell line, but the significance of the descriptors was slightly different. The l-configuration, van der Waals volume, the low logP value and the length of aliphatic side chain were the most significant, while the pKa value of the side chain (mean pKa = 11.6) was found to be more important than that of the α-amino group. In addition, the general similarity to l-arginine, the presence of an amino group in the terminal position of the side chain (Orn, Lys) and the basic character were significant descriptors, while the significance of the acidity is negligibly low. As a final conclusion, the following descriptors were found to be important generally for the cationic transporters: the van der Waals volume, hydrophobicity (log P); l-configuration; the size of the side chain; the general similarity to l-arginine; the presence of an α-amino group; the general basicity of the molecule; the pKa values of the α-amino group (in macrophages) or that of the side chain (in CAT-1 cells). These descriptors can be regarded as the general structurally important binding characteristics of the cationic amino transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

ANOVA:

Analysis of variances between groups

CAT:

Cationic amino acid transporter

HBSS:

Hank’s buffered salt solution

NOS:

Nitric oxide synthase

PBS:

Phosphate buffered saline

QSAR:

Quantitative structure–activity relationship

References

  • 3DNET4 W (2002) Vichem Ltd., Budapest, Hungary

  • ACD/Labs (2002) Ver. 6.0, Advanced Chemistry Development Inc. Toronto

  • Baydoun AR, Bogle RG, Pearson JD, Mann GE (1994) Discrimination between citrulline and arginine transport in activated murine macrophages: inefficient synthesis of NO from recycling of citrulline to arginine. Br J Pharmacol 112:487–492

    PubMed  CAS  Google Scholar 

  • Baydoun AG, Mann GE (1994) Selective targeting of nitric oxide synthase inhibitors to system y + in activated macrophages. Biochem Biophys Res Commun 200:726–731

    Article  PubMed  CAS  Google Scholar 

  • Bogle RG, Baydoun AR, Pearson JD, Moncada S, Mann GE (1992) l-arginine transport is increased in macrophages generating nitric oxide. Biochem J 284:15–18

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Closs EI (1996) CATs, a family of three distinct mammalian cationic amino acid transporter. Amino Acids 11:193–208

    CAS  Google Scholar 

  • Closs EI, Basha FZ, Habermeier A, Förstermann U (1997) Interference of L-arginine analogues with L-arginine transport mediated by the y + carrier hCAT-2B. Nitric Oxide 1:65–73

    Article  PubMed  CAS  Google Scholar 

  • Closs EI, Scheld JS, Sharafi M, Forstermann U (2000) Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol 57:68–74

    PubMed  CAS  Google Scholar 

  • Closs EI, Simon A, Vekony N, Rottman A (2004) Plasma membrane transporters for arginine. J Nutr 134:2752S–2759S

    PubMed  CAS  Google Scholar 

  • Closs EI, Boissel JP, Habermaier A, Rotmann A (2006) Structure and function of cationic amino acid transporters (CATs). J Membrane Biol 213:67–77

    Article  CAS  Google Scholar 

  • Currie GA (1978) Activated macrophages kill tumour cells by releasing arginase. Nature 273:758–759

    Article  PubMed  CAS  Google Scholar 

  • Erős D, Kövesdi I, Őrfi L, Takács-Novák K, Acsády Gy, Kéri Gy (2002) Reliability of logP predictions based on calculated molecular descriptors: a critical review. Curr Med Chem 9:1819–1829

    PubMed  Google Scholar 

  • Flodstrom M, Chen MC, Smismans A, Schuit F, Pipeleers DG, Eizirik DL (1999) Interleukin 1beta increases arginine accumulation and activates the citrulline-NO cycle in rat pancreatic beta cells. Cytokine 11:400–407

    Article  PubMed  CAS  Google Scholar 

  • Hansch C, Bjorkroth JP, Leo A (1987) Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci 76:663–687

    Article  PubMed  CAS  Google Scholar 

  • Hey C, Boucher JL, Vadon-Le Goff S, Ketterer G, Wessler I, Racké K (1997) Inhibition of arginase in rat and rabbit alveolar macrophages by Nω-hydroxy-D, l-indospicine, effects on d-arginine utilization by nitric oxide synthase. Br J Pharmacol 121:395–400

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa H, Sawamura T, Kobayashi S, Ninomiya H, Miwa S, Masaki T (1997) Cloning and characterization of a brain-specific cationic amino acid transporter. J Biol Chem 272:8717–8722

    Article  PubMed  CAS  Google Scholar 

  • Hrabák A, Bajor T, Temesi Á (1994a) Comparison of substrate and inhibitor specificity of arginase and nitric oxide (NO) synthase for arginine analogues and related compounds in murine and rat macrophages. Biochem Biophys Res Commun 198:206–212

    Article  PubMed  Google Scholar 

  • Hrabák A, Idei M, Temesi Á (1994b) Arginine supply for nitric oxide synthesis and arginase is mainly exogeneous in elicited murine and rat macrophages. Life Sci 55:797–805

    Article  PubMed  Google Scholar 

  • Hrabák A, Bajor T, Temesi Á (1996) Computer-aided comparison of the inhibition of arginase and nitric oxide synthase in macrophages by amino acids not related to arginine. Comp Biochem Physiol 113B:375–381

    Google Scholar 

  • Inoue Y, Bode BP, Beck DJ, Li AP, Bland KI, Souba WW (1993) Arginine transport in human liver. Characterization and effects of nitric oxide synthase inhibitors. Ann Surg 218:350–362

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Groudine M (1997) A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J Biol Chem 272:26780–26786

    Article  PubMed  CAS  Google Scholar 

  • Kakuda DK, Sweet MJ, Mac Leod CL, Hume DA, Markovich D (1999) CAT2-mediated l-arginine transport and nitric oxide production in activated macrophages. Biochem J 340:549–553

    Article  PubMed  CAS  Google Scholar 

  • Labute P (1998) MOE LogP(Octanol/Water) Model. unpublished. Source code in MOE ($MOE/lib/svl/quasar.svl/q_logp.svl)

  • Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry, 2nd edn edn. Worth Publisher, New York, p 914

    Google Scholar 

  • MacLeod CL, Kakuda DK (1996) Regulation of CAT: cationic amino acid transporter gene expression. Amino Acids 11:171–191

    CAS  Google Scholar 

  • Manner CK, Nicholson B, MacLeod CL (2003) CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes. J Neurochem 85:476–482

    Article  PubMed  CAS  Google Scholar 

  • Marletta MA (1994) Approaches toward selective inhibition of nitric oxide synthase. J Med Chem 37:1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Martin L, Comalada M, Marti L, Closs EI, MacLeod CL, Martin del Rio R, Zorzano A, Modolell M, Celada A, Palacin M, Bertran J (2006) Granulocyte-macrophage colony-stimulating factor increases l-arginine transport through the induction of CAT2 in bone marrow-derived macrophages. Am J Physiol Cell Physiol 290C:1364–1372

    Google Scholar 

  • MOE 2006.08 Copyright (c) 1997–2006 Chemical Computing Group Inc

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  • Nicholson B, Manner CK, Kleeman J, MacLeod CL (2001) Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J Biol Chem 276:15881–15885

    Article  PubMed  CAS  Google Scholar 

  • Rotmann A, Strand D, Martiné U, Closs EI (2004) Protein kinase C activation promotes the internalization of the human cationic amino acid transporter hCAT-1. J Biol Chem 279:54185–54192

    Article  PubMed  CAS  Google Scholar 

  • Rotmann A, Vékony N, Gassner D, Niegisch G, Strand D, Martiné U, Closs EI (2006) Activation of classical protein kinase C reduces the expression of the human cationic amino acid transporter hCAT-3 in the plasma membrane. Biochem J 395:117–123

    Article  PubMed  CAS  Google Scholar 

  • Rotmann A, Simon A, Martiné U, Habermeier A, Closs EI (2007) Activation of classical protein kinase C decreases transport via systems y + and y + L. Am J Physiol Cell Physiol 292:2259–2268

    Article  Google Scholar 

  • Sato H, Fujiwara M, Bannai S (1992) Effect of lipopolysaccharide on transport and metabolism of arginine in mouse peritoneal macrophages. J Leukoc Biol 52:161–164

    PubMed  CAS  Google Scholar 

  • Schmidt K, Klatt P, Mayer B (1994) Uptake of nitric oxide synthase inhibitors by macrophage RAW 264.7 cells. Biochem J 301:313–316

    PubMed  CAS  Google Scholar 

  • Simmons WS, Closs EI, Cunningham JM, Smith TW, Kelly RA (1996) Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. J Biol Chem 271:11694–11702

    Article  PubMed  CAS  Google Scholar 

  • Talaue MT, Venketaraman V, Hazbon MH, Peteroy-Kelly M, Seth A, Colangeli R, Alland D, Connell ND (2006) Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol 188:4830–4840

    Article  PubMed  CAS  Google Scholar 

  • Vekony N, Wolf S, Boissel JP, Gnauert K, Closs EI (2001) Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues. Biochemistry 40:12387–12394

    Article  PubMed  CAS  Google Scholar 

  • White MF (1985) The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochim Biophys Acta 822:355–374

    PubMed  CAS  Google Scholar 

  • Wildman SA, Crippen GM (1999) Prediction of physiochemical parameters by atomic contributions. J Chem Inf Comput Sci 39:868–873

    CAS  Google Scholar 

  • Wolf S, Janzen A, Vékony N, Martiné U, Strand D, Closs EI (2002) Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity. Biochem J 364:767–775

    Article  PubMed  CAS  Google Scholar 

  • Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacin M, Lloberas J, Celada A (2006) Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur J Immunol 36:1516–1526

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks to dr. Gergely Keszler for the helpful discussion, to Miss Judit Szabó and Mr. Antal Holly for their skillful technical assistance. The contribution of the laboratory of Prof. Ellen I. Closs (University of Mainz, Germany) by providing CAT-1 cells is also highly appreciated. The work was supported by the grants of the Hungarian Ministry of Welfare (ETT 556/2006) and of the National Foundation of Scientific Research (OTKA 043075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Hrabák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erős, D., Őrfi, L., Csuka, I. et al. Binding specificity of the l-arginine transport systems in mouse macrophages and human cells overexpressing the cationic amino acid transporter hCAT-1. Amino Acids 36, 483–492 (2009). https://doi.org/10.1007/s00726-008-0106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0106-x

Keywords

Navigation