Skip to main content

Functional Properties of Organic Cation Transporter OCT1, Binding of Substrates and Inhibitors, and Presumed Transport Mechanism

  • Chapter
Organic Cation Transporters

Abstract

Organic cation transporters (OCTs) of the SLC22 family mediate absorption, distribution and excretion of cationic drugs. The OCTs belong to the major facilitator superfamily (MFS) containing transporters with 12 pseudosymmetrically arranged transmembrane α-helices. Whereas most transporters of the MFS are substrate selective and secondary active, most transporters of the SLC22 family are polyspecific facilitative diffusion systems. Recently resolved crystal structures of MFS transporters indicate translocation via alternating access surpassing a state with substrate occlusion. After cloning of the rat transporters rOCT1 and rOCT2, the functional properties of these transporters have been investigated employing tracer uptake measurements, electrical measurements, voltage clamp fluorometry, and substrate binding measurements. Extensive mutagenesis studies in rOCT1 were interpreted in frame of tertiary structures that were modeled according to lactose permease which belongs to the MFS. Considering rOCT1 and rOCT2 as OCT prototypes, and assuming that all transporters of the MFS undergo similar interhelical movements during transport, a model for the translocation mechanism of OCTs is proposed. The model suggests that two small organic cations bind to the innermost cleft of the outward-facing conformation of OCTs and that translocation can be performed when either one or two cations are loaded per transporter monomer. With this model recent experimental recent results concerning interaction of ligands at OCTs can be explained that have high biomedical impact for in vitro testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994;372:549–52.

    Article  PubMed  Google Scholar 

  2. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24:1227–51.

    Article  CAS  PubMed  Google Scholar 

  3. Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34:413–35.

    Article  CAS  PubMed  Google Scholar 

  4. Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62:1–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Schmitt BM, Gorbunov D, Schlachtbauer P, Egenberger B, Gorboulev V, Wischmeyer E, Müller T, Koepsell H. Charge-to-substrate ratio during organic cation uptake by rat OCT2 is voltage dependent and altered by exchange of glutamate 448 with glutamine. Am J Physiol Renal Physiol. 2009;296:F709–22.

    Article  CAS  PubMed  Google Scholar 

  6. Koepsell H, Schmitt BM, Gorboulev V. Organic cation transporters. Rev Physiol Biochem Pharmacol. 2003;150:36–90.

    CAS  PubMed  Google Scholar 

  7. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H. Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol. 2001;281:F454–68.

    CAS  PubMed  Google Scholar 

  8. Chen R, Jonker JW, Nelson JA. Renal organic cation and nucleoside transport. Biochem Pharmacol. 2002;64:185–90.

    Article  CAS  PubMed  Google Scholar 

  9. Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H. Monoamine neurotransmitter transport mediated by the polyspecific cation _transporter rOCT1. FEBS Lett. 1996;395:153–6.

    Google Scholar 

  10. Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem. 1996;271:32599–604.

    Article  CAS  PubMed  Google Scholar 

  11. Nagel G, Volk C, Friedrich T, Ulzheimer JC, Bamberg E, Koepsell H. A reevaluation of substrate specificity of the rat cation transporter rOCT1. J Biol Chem. 1997;272:31953–6.

    Article  CAS  PubMed  Google Scholar 

  12. Budiman T, Bamberg E, Koepsell H, Nagel G. Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J Biol Chem. 2000;275:29413–20.

    Article  CAS  PubMed  Google Scholar 

  13. Keller T, Elfeber M, Gorboulev V, Reiländer H, Koepsell H. Purification and functional reconstitution of the rat organic cation transporter OCT1. Biochemistry. 2005;44:12253–63.

    Article  CAS  PubMed  Google Scholar 

  14. Schmitt BM, Koepsell H. Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J Biol Chem. 2005;280:24481–90.

    Article  CAS  PubMed  Google Scholar 

  15. Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM, Koepsell H. A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A. 2003;100:11753–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Accardi A, Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl¯ channels. Nature. 2004;427:803–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002;415:287–94.

    Article  CAS  PubMed  Google Scholar 

  18. Miller C. ClC chloride channels viewed through a transporter lens. Nature. 2006;440:484–9.

    Article  CAS  PubMed  Google Scholar 

  19. Jardetzky O. Simple allosteric model for membrane pumps. Nature. 1966;211:969–70.

    Article  CAS  PubMed  Google Scholar 

  20. Law CJ, Maloney PC, Wang D-N. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol. 2008;62:289–305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Volk C, Gorboulev V, Budiman T, Nagel G, Koepsell H. Different affinities of inhibitors to the outwardly and inwardly directed substrate binding site of organic cation transporter 2. Mol Pharmacol. 2003;64:1037–47.

    Article  CAS  PubMed  Google Scholar 

  22. Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, Yan N. Structure of a fucose transporter in an outward-open conformation. Nature. 2010;467:734–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature. 2012;490:361–6.

    Article  CAS  PubMed  Google Scholar 

  24. Hirai T, Heymann JAW, Shi D, Sarker R, Maloney PC, Subramaniam S. Three-dimensional structure of a bacterial oxalate transporter. Nat Struct Biol. 2002;9:597–600.

    CAS  PubMed  Google Scholar 

  25. Yin Y, Jensen MØ, Tajkhorshid E, Schulten K. Sugar binding and protein conformational changes in lactose permease. Biophys J. 2006;91:3972–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yan H, Huang W, Yan C, Gong X, Jiang S, Zhao Y, Wang J, Shi Y. Structure and mechanism of a nitrate transporter. Cell Rep. 2013;3:716–23.

    Article  CAS  PubMed  Google Scholar 

  27. Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM. Crystal structure of a eukaryotic phosphate transporter. Nature. 2013;496:533–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Newstead S, Drew D, Cameron AD, Postis VL, Xia X, Fowler PW, Ingram JC, Carpenter EP, Sansom MS, McPherson MJ, Baldwin SA, Iwata S. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J. 2011;30:417–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003;301:610–5.

    Article  CAS  PubMed  Google Scholar 

  30. Mirza O, Guan L, Verner G, Iwata S, Kaback HR. Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J. 2006;25:1177–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Guan L, Mirza O, Verner G, Iwata S, Kaback HR. Structural determination of wild-type lactose permease. Proc Natl Acad Sci U S A. 2007;104:15294–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Chaptal V, Kwon S, Sawaya MR, Guan L, Kaback HR, Abramson J. Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. Proc Natl Acad Sci U S A. 2011;108:9361–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science. 2003;301:616–20.

    Article  CAS  PubMed  Google Scholar 

  34. Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S. Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 2012;31:3411–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Guettou F, Quistgaard EM, Tresaugues L, Moberg P, Jegerschold C, Zhu L, Jong AJ, Nordlund P, Low C. Structural insights into substrate recognition in proton-dependent oligopeptide transporters. EMBO Rep. 2013;14:804–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Doki S, Kato HE, Solcan N, Iwaki M, Koyama M, Hattori M, Iwase N, Tsukazaki T, Sugita Y, Kandori H, Newstead S, Ishitani R, Nureki O. Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci U S A. 2013;110:11343–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zheng H, Wisedchaisri G, Gonen T. Crystal structure of a nitrate/nitrite exchanger. Nature. 2013;497:647–51.

    Article  CAS  PubMed  Google Scholar 

  38. Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature. 2014;507:73–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Radestock S, Forrest LR. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol. 2011;407:698–715.

    Article  CAS  PubMed  Google Scholar 

  40. Martin C, Berridge G, Higgins CF, Mistry P, Charlton P, Callaghan R. Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol. 2000;58:624–32.

    CAS  PubMed  Google Scholar 

  41. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323:1718–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Klingenberg M. Ligand-protein interaction in biomembrane carriers. The induced transition fit of transport catalysis. Biochemistry. 2005;44:8563–70.

    Article  CAS  PubMed  Google Scholar 

  43. Klingenberg M. Transport catalysis. Biochim Biophys Acta. 2006;1757:1229–36.

    Article  CAS  PubMed  Google Scholar 

  44. Gorboulev V, Volk C, Arndt P, Akhoundova A, Koepsell H. Selectivity of the polyspecific cation transporter rOCT1 is changed by mutation of aspartate 475 to glutamate. Mol Pharmacol. 1999;56:1254–61.

    CAS  PubMed  Google Scholar 

  45. Popp C, Gorboulev V, Müller TD, Gorbunov D, Shatskaya N, Koepsell H. Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Mol Pharmacol. 2005;67:1600–11.

    Article  CAS  PubMed  Google Scholar 

  46. Gorboulev V, Shatskaya N, Volk C, Koepsell H. Subtype-specific affinity for corticosterone of rat organic cation transporters rOCT1 and rOCT2 depends on three amino acids within the substrate binding region. Mol Pharmacol. 2005;67:1612–9.

    Article  CAS  PubMed  Google Scholar 

  47. Volk C, Gorboulev V, Kotzsch A, Müller TD, Koepsell H. Five amino acids in the innermost cavity of the substrate binding cleft of organic cation transporter 1 interact with extracellular and intracellular corticosterone. Mol Pharmacol. 2009;76:275–89.

    Article  CAS  PubMed  Google Scholar 

  48. Sturm A, Gorboulev V, Gorbunov D, Keller T, Volk C, Schmitt BM, Schlachtbauer P, Ciarimboli G, Koepsell H. Identification of cysteines in rat organic cation transporters rOCT1 (C322, C451) and rOCT2 (C451) critical for transport activity and substrate affinity. Am J Physiol Renal Physiol. 2007;293:F767–79.

    Article  CAS  PubMed  Google Scholar 

  49. Abramson J, Smirnova I, Kasho V, Verner G, Iwata S, Kaback HR. The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett. 2003;555:96–101.

    Article  CAS  PubMed  Google Scholar 

  50. Gorbunov D, Gorboulev V, Shatskaya N, Mueller T, Bamberg E, Friedrich T, Koepsell H. High-affinity cation binding to organic cation transporter 1 induces movement of helix 11 and blocks transport after mutations in a modeled interaction domain between two helices. Mol Pharmacol. 2008;73:50–61.

    Article  CAS  PubMed  Google Scholar 

  51. Ambudkar SV, Anantharam V, Maloney PC. UhpT, the sugar phosphate antiporter of Escherichia coli, functions as a monomer. J Biol Chem. 1990;265:12287–92.

    CAS  PubMed  Google Scholar 

  52. Sahin-Toth M, Lawrence MC, Kaback HR. Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc Natl Acad Sci U S A. 1994;91:5421–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hou Z, Cherian C, Drews J, Wu J, Matherly LH. Identification of the minimal functional unit of the homo-oligomeric human reduced folate carrier. J Biol Chem. 2010;285:4732–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Veenhoff LM, Heuberger EH, Poolman B. The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J. 2001;20:3056–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hong M, Xu W, Yoshida T, Tanaka K, Wolff DJ, Zhou F, Inouye M, You G. Human organic anion transporter hOAT1 forms homooligomers. J Biol Chem. 2005;280:32285–90.

    Article  CAS  PubMed  Google Scholar 

  56. Keller T, Schwarz D, Bernhard F, Dotsch V, Hunte C, Gorboulev V, Koepsell H. Cell free expression and functional reconstitution of eukaryotic drug transporters. Biochemistry. 2008;47:4552–64.

    Article  CAS  PubMed  Google Scholar 

  57. Keller T, Egenberger B, Gorboulev V, Bernhard F, Uzelac Z, Gorbunov D, Wirth C, Koppatz S, Dötsch V, Hunte C, Sitte HH, Koepsell H. The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J Biol Chem. 2011;286:37874–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Brast S, Grabner A, Sucic S, Sitte HH, Hermann E, Pavenstadt H, Schlatter E, Ciarimboli G. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization. FASEB J. 2012;26:976–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Duan P, Li S, You G. Transmembrane peptide as potent inhibitor of oligomerization and function of human organic anion transporter 1. Mol Pharmacol. 2011;79:569–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Egenberger B, Gorboulev V, Keller T, Gorbunov D, Gottlieb N, Geiger D, Mueller TD, Koepsell H. A substrate binding hinge domain is critical for transport-related structural changes of organic cation transporter 1. J Biol Chem. 2012;287:31561–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Pelis RM, Dangprapai Y, Cheng Y, Zhang X, Terpstra J, Wright SH. Functional significance of conserved cysteines in the human organic cation transporter 2. Am J Physiol Renal Physiol. 2012;303:F313–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G. Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc. 2009;131:17777–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Roos C, Zocher M, Muller D, Munch D, Schneider T, Sahl HG, Scholz F, Wachtveit J, Ma Y, Proverbio D, Henrich E, Dotsch V, Bernhard F. Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. Biochim Biophys Acta. 2012;1818:3098–106.

    Article  CAS  PubMed  Google Scholar 

  64. Ciarimboli G, Koepsell H, Iordanova M, Gorboulev V, Dürner B, Lang D, Edemir B, Schröter R, Van Le T, Schlatter E. Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J Am Soc Nephrol. 2015;16:1562–70.

    Article  Google Scholar 

  65. Grabner A, Brast S, Sucic S, Bierer S, Hirsch B, Pavenstädt H, Sitte HH, Schlatter E, Ciarimboli G. LAPTM4A interacts with hOCT2 and regulates its endocytotic recruitment. Cell Mol Life Sci. 2011;68:4079–90.

    Article  CAS  PubMed  Google Scholar 

  66. Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, Clotet B, Pastor-Anglada M, Koepsell H, Martinez-Picado J. Transport of lamivudine [(-)-b-L-2′,3′-dideoxy-3′-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329:252–61.

    Article  CAS  PubMed  Google Scholar 

  67. Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol. 2010;201:105–67.

    Article  Google Scholar 

  68. Thevenod F, Ciarimboli G, Leistner M, Wolff NA, Lee WK, Schatz I, Keller T, Al-Monajjed R, Gorboulev V, Koepsell H. Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate Cd. Mol Pharm. 2013;10:3045–56.

    Article  CAS  PubMed  Google Scholar 

  69. Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther. 2013;346:300–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Koepsell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koepsell, H., Keller, T. (2016). Functional Properties of Organic Cation Transporter OCT1, Binding of Substrates and Inhibitors, and Presumed Transport Mechanism. In: Ciarimboli, G., Gautron, S., Schlatter, E. (eds) Organic Cation Transporters. Springer, Cham. https://doi.org/10.1007/978-3-319-23793-0_2

Download citation

Publish with us

Policies and ethics