Skip to main content
Log in

Ca2+-independent effects of spermine on pyruvate dehydrogenase complex activity in energized rat liver mitochondria incubated in the absence of exogenous Ca2+ and Mg2 +

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the absence of exogenous Ca2+ and Mg2+ and in the presence of EGTA, which favours the release of endogenous Ca2+, the polyamine spermine is able to stimulate the activity of pyruvate dehydrogenase complex (PDC) of energized rat liver mitochondria (RLM). This stimulation exhibits a gradual concentration-dependent trend, which is maximum, about 140%, at 0.5 mM concentration, after 30 min of incubation. At concentrations higher than 0.5 mM, spermine still stimulates PDC, when compared with the control, but shows a slight dose-dependent decrease. Changes in PDC stimulation are very close to the phosphorylation level of the E subunit of PDC, which regulates the activity of the complex, but it is also the target of spermine. In other words, progressive dephosphorylation gradually enhances the stimulation of RLM and progressive phosphorylation slightly decreases it. These results provide the first evidence that, when transported in RLM, spermine can interact in various ways with PDC, showing dose-dependent behaviour. The interaction most probably takes place directly on a specific site for spermine on one of the regulatory enzymes of PDC, i.e. pyruvate dehydrogenase phosphatase (PDP). The interaction of spermine with PDC may also involve activation of another regulatory enzyme, pyruvate dehydrogenase kinase (PDK), resulting in an increase in E phosphorylation and consequently reduced stimulation of PDC at high polyamine concentrations. The different effects of spermine in RLM are discussed, considering the different activities of PDP and PDK isoenzymes. It is suggested that the polyamine at low concentrations stimulates the isoenzyme PDP2 and at high concentrations it stimulates PDK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ΔΨ:

Membrane potential value

E1 :

Pyruvate dehydrogenase

E2 :

Dihydrolipoamide transacetylase

E3 :

Dihydrolipoamide dehydrogenase

EGTA:

Ethylene glycol tetraacetic acid

FCCP:

Carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone

PDC:

Pyruvate dehydrogenase complex

PDK:

Pyruvate dehydrogenase kinase

PDP:

Pyruvate dehydrogenase phosphatase

Pi:

Phosphate

ROS:

Reactive oxygen species

RLM:

Rat liver mitochondria

SPM:

Spermine

TPP+ :

Tetraphenylphosphonium

References

  • Agostinelli E, Arancia G, Dalla Vedova L, Belli F, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical applications. Amino Acids 27:347–358

    Article  PubMed  CAS  Google Scholar 

  • Affolter H, Siegel E (1979) A simple system for the measurement of ion activities with solvent polymeric membrane electrodes. Anal Biochem 97:315–319

    Article  PubMed  CAS  Google Scholar 

  • Behal RH, Buxton DB, Robertson JG, Olson MS (1993) Regulation of the pyruvate dehydrogenase multienzyme complex. Annu Rev Nutr 13:497–520

    Article  PubMed  CAS  Google Scholar 

  • Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329:191–196

    PubMed  CAS  Google Scholar 

  • Clari G, Marzaro G, Moret V (1990) Metabolic depletion effect on serine/threonine- and tyrosine-phosphorylations of membrane proteins in human erythrocytes. Biochim Biophys Acta 1023:319–324

    Article  PubMed  CAS  Google Scholar 

  • Damuni Z, Humphreys JS, Reed LJ (1984) Stimulation of pyruvate dehydrogenase phosphatase activity by polyamines. Biochim Biophys Res Comm 124:95–99

    Article  CAS  Google Scholar 

  • De Marcucci OG, Hodgson JA, Lindsay JG (1986) The Mr-50000 polypeptide of mammalian pyruvate dehydrogenase complex participates in the acetylation reactions. Eur J Biochem 158:587–594

    Article  PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    PubMed  CAS  Google Scholar 

  • Gudi R, Bower-Kinley MM, Kedishvili NY, Zhao Y, Popov KM (1995) Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem 270:28989–28994

    Article  PubMed  CAS  Google Scholar 

  • Heby O (1981) Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19:1–20

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Gudi R, Wu P, Harris RA, Hamilton J, Popov KM (1998) Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid sequences, expression, and regulation. J Biol Chem 273:17680–17688

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Wu P, Popov KM, Harris RA (2003) Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes 52:1371–1376

    Article  PubMed  CAS  Google Scholar 

  • Jensen BD, Gunter KK, Gunter TE (1986) The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation. Arch Biochem Biophys 248:305–323

    Article  PubMed  CAS  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  PubMed  CAS  Google Scholar 

  • Kerbey AL, Randall PJ (1982) Pyruvate dehydrogenase kinase/activator in rat heart mitochondria. Assay, effect of starvation, and effect of protein-synthesis inhibitors of starvation. Biochem J 206:103–111

    PubMed  CAS  Google Scholar 

  • Kiechle FL, Malinski H, Dandurand DM, McGill JB (1990) The effect of amino acids, monoamines and polyamines on pyruvate dehydrogenase activity in mitochondria from rat adipocytes. Mol Cell Biochem 93:195–206

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lapidus RG, Sokolove PM (1992) Inhibition by spermine of the inner membrane permeability transition of isolated rat heart mitochondria. FEBS Lett 313:314–318

    Article  PubMed  CAS  Google Scholar 

  • Lapidus RG, Sokolove PM (1993) Spermine inhibition of the permeability transition of isolated rat liver mitochondria: an investigation of mechanism. Arch Biochem Biophys 306:246–253

    Article  PubMed  CAS  Google Scholar 

  • Lapidus RG, Sokolove PM (1994) The mitochondrial permeability transition. Interactions of spermine, ADP, and inorganic phosphate. J Biol Chem 269:18931–18936

    PubMed  CAS  Google Scholar 

  • Linn TC, Pettit FH, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62:234–241

    Article  PubMed  CAS  Google Scholar 

  • Mancon M, Siliprandi D, Toninello A (1990) On the presence of polyamines in mitochondria. Ital J Biochem 39:278–279

    Google Scholar 

  • Moreno-Sanchez R, Hansford RG (1988) Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration. Biochem J 256:403–412

    PubMed  CAS  Google Scholar 

  • Nicchitta CV, Williamson JR (1984) Spermine. A regulator of mitochondrial calcium cycling. J Biol Chem 259:12978–12983

    PubMed  CAS  Google Scholar 

  • Patel MS, Roche TE (1990) Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB 4:3224–3233

    CAS  Google Scholar 

  • Pegg AE (1984) The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine. Biochem J 224:29–38

    PubMed  CAS  Google Scholar 

  • Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243:C212–221

    PubMed  CAS  Google Scholar 

  • Phillips JE, Chaffee RRJ (1982) Restorative effects of spermine on oxidative phosphorylation and respiration in heat-aged mitochondria. Biochim Biophys Res Comm 108:174–181

    Article  CAS  Google Scholar 

  • Popov KM, Kedishvili NY, Zhao Y, Gudi R, Harris RA (1994) Molecular cloning of the p45 subunit of pyruvate dehydrogenase kinase. J Biol Chem 269:29720–29724

    PubMed  CAS  Google Scholar 

  • Priestman DA, Mistry SC, Halsall A, Randall PJ (1994) Role of protein synthesis and of fatty acid metabolism in the longer-term regulation of pyruvate dehydrogenase kinase. Biochem J 300:659–664

    PubMed  CAS  Google Scholar 

  • Randle PJ (1986) Fuel selection in animals. Biochem Soc Trans 14:799–806

    PubMed  CAS  Google Scholar 

  • Reed LJ, Hackert ML (1990) Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem 265:8971–8974

    PubMed  CAS  Google Scholar 

  • Rowles J, Scherer SW, Xi T, Majer M, Nickle DC, Rommens JM, Popov KM, Harris RA, Riebow NL, Xia J, Tsui LC, Bogardus C, Prochazka M (1996) Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem 271:22376–22382

    Article  PubMed  CAS  Google Scholar 

  • Rutter GA, Diggle TA, Denton RM (1992) Regulation of pyruvate dehydrogenase by insulin and polyamines within electropermeabilized fat-cells and isolated mitochondria. Biochem J 285:435–439

    PubMed  CAS  Google Scholar 

  • Salvi M, Toninello A (2003) Reciprocal effects between spermine and Mg2+ on their movements across the mitochondrial membrane. Arch Biochem Biophys 411:262–266

    Article  PubMed  CAS  Google Scholar 

  • Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A (2006) Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radical Bio Med 41:1272–1281

    Article  CAS  Google Scholar 

  • Schneider WC, Hogeboom GH (1950) Intracellular distribution of enzymes V. Further studies on the distribution of cytochrome c in rat liver homogenates. J Biol Chem 183:123–128

    CAS  Google Scholar 

  • Solaini G, Tadolini B (1984) Spermine binding to submitochondrial particles and activation of adenosine triphosphatase. Biochem J 218:495–499

    PubMed  CAS  Google Scholar 

  • Sugden MC, Fryer LGD, Orfali KA, Priestman DA, Donald E, Holness MJ (1998) Studies of the long-term regulation of hepatic pyruvate dehydrogenase kinase. Biochem J 329:89–94

    PubMed  CAS  Google Scholar 

  • Tassani V, Biban C, Toninello A, Siliprandi D (1995a) Inhibition of mitochondrial permeability transition by polyamines and magnesium: importance of the number and distribution of electric charges. Biochem Biophys Res Comm 207:661–667

    Article  PubMed  CAS  Google Scholar 

  • Tassani V, Ciman M, Sartorelli L, Toninello A, Siliprandi D (1995b) Polyamine content and spermine transport in rat brain mitochondria. Neurosci Res Commun 16:11–17

    CAS  Google Scholar 

  • Tassani V, Campagnolo M, Toninello A, Siliprandi D (1996) The contribution of endogenous polyamines to the permeability transition of rat liver mitochondria. Biochem Biophys Res Commun 226:850–854

    Article  PubMed  CAS  Google Scholar 

  • Thomas AO, Denton RM (1986) Use of toluene-permeabilized mitochondria to study the regulation of adipose tissue pyruvate dehydrogenase in situ. Further evidence that insulin acts through stimulation of pyruvate dehydrogenase phosphate phosphatase. Biochem J 238:83–91

    PubMed  CAS  Google Scholar 

  • Thomas AP, Diggle TA, Denton RM (1986) Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions. Similar effects of spermine and insulin. Biochem J 238:83–91

    PubMed  CAS  Google Scholar 

  • Toninello A (2001) Interactions of polyamines with mammalian mitochondria. Curr Top Biochem Res 4:37–48

    CAS  Google Scholar 

  • Toninello A, Miotto G, Siliprandi D, Siliprandi N, Garlid KD (1988) On the mechanism of spermine transport in liver mitochondria. J Biol Chem 263:19407–19411

    PubMed  CAS  Google Scholar 

  • Toninello A, Dalla Via L, Testa S, Siliprandi D, Siliprandi N (1990) Transport and action of spermine in rat heart mitochondria. Cardioscience 1:287–294

    PubMed  CAS  Google Scholar 

  • Toninello A, Dalla Via L, Testa S, Siliprandi D (1992a) Electrophoretic polyamine transport in rat liver mitochondria. Amino Acids 2:69–76

    Article  CAS  Google Scholar 

  • Toninello A, Dalla Via L, Siliprandi D, Garlid KD (1992b) Evidence that spermine, pospermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J Biol Chem 267:18393–18397

    PubMed  CAS  Google Scholar 

  • Toninello A, Dalla Via L, Stevanato R, Yagisawa S (2000) Kinetics and free energy profiles of spermine transport in liver mitochondria. Biochemistry 39:324–331

    Article  PubMed  CAS  Google Scholar 

  • Toninello A, Salvi M, Mondovì B (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr Med Chem 11:2349–2374

    PubMed  CAS  Google Scholar 

  • Votyakova TV, Bazhenova EN, Zojagiliskaya RA (1990) Polyamines improve Ca2+ transport system of the yeast mitochondria. FEBS Lett 261:139–141

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Sato J, Zhao Y, Jaskiewics J, Popov KM, Harris RA (1998) Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J 329:197–201

    PubMed  CAS  Google Scholar 

  • Yan J, Lawson JE, Reed LJ (1996) Role of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase. Proc Natl Acad Sci 93:4953–4596

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Toninello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pezzato, E., Battaglia, V., Brunati, A.M. et al. Ca2+-independent effects of spermine on pyruvate dehydrogenase complex activity in energized rat liver mitochondria incubated in the absence of exogenous Ca2+ and Mg2 + . Amino Acids 36, 449–456 (2009). https://doi.org/10.1007/s00726-008-0099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0099-5

Keywords

Navigation