Advertisement

Amino Acids

, Volume 33, Issue 1, pp 19–42 | Cite as

The five bromotryptophans

  • S. Bittner
  • R. Scherzer
  • E. Harlev
Review Article

Summary.

The five regioisomeric bromotryptophans (BrTrps) play an important role in the life of sponges and lower marine invertebrates. These bromo-amino acids, which are formed by post-translational modifications, are not found in nature in their free state, but rather are involved in more complex structures. Any of the BrTrps can be part of a peptide, a cyclic peptide, an indole alkaloid, an ergot alkaloid, a macrocycle and others. The present review covers the synthesis, physical and spectroscopic properties of the five BrTrps. It also describes the many exiting pharmacological and biological activities played by the BrTrps and by various secondary metabolites containing brominated tryptophan moieties. Of special interest are cyclic peptides containing the 2-BrTrp unit, which were isolated from marine sponges e.g. konbamide, orbiculamide A, the various keramamides, jaspamide eusynstyelamide and more. Important families of non-cyclic peptides containing the 6-BrTrp, include the styelins, the conotoxins, the cathelicidins and several constrained macrocyclic peptides. Many marine secondary BrTrp-containing, non-peptidic metabolites also display a remarkable spectrum of bioactivities, which can be harnessed for therapeutic and other purposes. Examples are: barettin, bromotryptanthrin, tetraacetyl clionamide, cyclocinamide A, clavicipitic acid, various brominated β-carbolines. In this review we have presented the various synthetic routes leading to the preparation of the five BrTrps and many of its derivatives. Also, we have introduced the reader to many synthetic routes leading to BrTrp-containing non-peptidic natural products. Although the functional role of the various compounds in the human body is only poorly understood, its effects were extensively studied. Almost all of these compounds exhibit important therapeutic properties e.g. antifungal, antimicrobial, antihelmintic, insecticidal ichthyotoxic and anticancer activity. In the present review attempts have been made to provide synopsis, synthesis and symbiosis of chemical and biological actions, which may provide future guidance and facilitate further research in this area.

Keywords: Tryptophan – Bromotryptophan – Synthesis – Post-translational bromination – Cyclic peptides – Antimicrobial peptides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, MB, Lopez-Vera, E, Ortiz, E, Becerril, B, Possani, LD, Olivera, BM, de la Cotera, EPH 2005A novel conotoxin from Conus delessertii with posttranslationally modified lysine residuesBiochemistry441113011136PubMedCrossRefGoogle Scholar
  2. Aiello, A, Fattorusso, E, Magno, S, Mayol, L 1987Brominated β-carbolines from the marine hydroid Aglaophenia pluma Linnaeus Tetrahedron4359295932CrossRefGoogle Scholar
  3. Allen MC, Brundish DE, Wade R (1980) Synthesis of 5- and 7-bromotryptophan and of [5-bromotryptophan9]-β-coritcotropin-(1-24)-tetracosapeptide, a highly potent corticotrophin analog. J Chem Soc, Perkin Trans 1, 1928–1932Google Scholar
  4. Andersen RJ (1978) Tetracetyl clionamide, a 6-bromotryptophan derivative from the sponge Cliona celata. Tetrahedron Lett 2541–2544Google Scholar
  5. Antson, AA, Brzozowski, AM, Dodson, EJ, Dauter, Z, Wilson, KS, Kurecki, T, Otridge, J, Gollnick, P 199411-fold symmetry of the trp RNA-binding attenuation protein (TRAP) from Bacillus subtilis determined by X-ray analysisJ Mol Biol24415PubMedCrossRefGoogle Scholar
  6. Berthelot, A, Piguel, S, Le Dour, G, Vidal, J 2003Synthesis of macrocyclic peptide analogues of proteasome inhibitor TMC-95AJ Org Chem6898359838PubMedCrossRefGoogle Scholar
  7. Craig, AG, Jimenez, EC, Dykert, J, Nielsen, DB, Gulyas, J, Abogadie, FC, Porter, J, Rivier, JE, Cruz, LJ, Olivera, BM, McIntosh, JM 1997A novel post-translational modification involving bromination of tryptophan. Identification of the residue, L-6-bromotryptophan, in peptides from Conus imperialis and Conus radiatus venomJ Biol Chem7246894698Google Scholar
  8. Craig, AG, Bandyopadhyay, P, Olivera, BM 1999Post-translationally modified neuropeptides from Conus venomsEur J Biochem264271275PubMedCrossRefGoogle Scholar
  9. Cruz LJ, Olivera BM, McIntosh JM, Jimenez E, Craig AG, Rivier JA, Julius D, England L (1998) Preparation, characterization and isolation of bromotryptophan conopeptides as pharmaceutical agents. PCT Int. Appl. CODEN: PIXXD2 WO 9831705 A1 19980723Google Scholar
  10. De Croos, PZ, Sangdee, P, Stockwell, BL, Kar, L, Thompson, EB, Johnson, ME, Currie, BL 1990Hemoglobin S antigelation agents based on 5-bromotryptophan with potential for sickle cell anemiaJ Med Chem3331383142PubMedCrossRefGoogle Scholar
  11. De Ropp, RS, Furst, A 1966Biochemical and behavioral effects of some substituted tryptophansArch Internat Pharmacodyn Therap163149157Google Scholar
  12. England, LJ, Imperial, J, Jacobsen, R, Craig, AG, Gulyas, J, Akhtar, M, Rivier, J, Julius, D, Olivera, BM 1997Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snailsScience281575578CrossRefGoogle Scholar
  13. Fiedler, E, Fiedler, HP, Gerhard, A, Keller-Schierlein, W, Koenig, WA, Zaehner, H 1976Metabolic products of microorganisms. Part 156. Synthesis and biosynthesis of substituted tryptanthrinsArch Microbiol107249256PubMedCrossRefGoogle Scholar
  14. Furusawa, E, Cutting, W, Furst, A 1964Inhibitory effect of antiviral compounds on Columbia SK, LCM, vaccinia and adeno type 12 viruses in vitroChemotherapia895105CrossRefGoogle Scholar
  15. Gan, T, Liu, R, Yu, P, Zhao, S, Cook, JM 1997Enantiospecific synthesis of optically active 6-methoxytryptophan derivatives and total synthesis of tryprostatin AJ Org Chem6292989304CrossRefGoogle Scholar
  16. Gibson, S, McGeer, EG, McGeer, PL 1970Effect of selective inhibitors of tyrosine and tryptophan hydroxylases on self-stimulation in the ratExper Neurol27283290CrossRefGoogle Scholar
  17. Grieco, PA, Hon, YS, Perez-Medrano, A 1988Convergent, enantiospecific total synthesis of the novel cyclodepsipeptide (+)-Jasplakinolide (Jaspamide)J Am Chem Soc11016301631CrossRefGoogle Scholar
  18. Grieco, PA, Reilly, M 1998Studies related to the absolute configuration of cyclocinamide A: total synthesis of 4(R),11(R)-cyclocinamide ATetrahedron Lett3989258928CrossRefGoogle Scholar
  19. Guenther L, Rausch R (1985) Thin-layer chromatographic enantiomeric resolution based on ligand exchange chromatography. In: Kaiser RE (ed) Proc. Int. Symp. Instrum. High Perform. Thin-Layer Chromatogr, pp 469–474Google Scholar
  20. Harvey DG (1959) Synthesis of 5-bromotryptophan and some derivatives. J Chem Soc 473–474Google Scholar
  21. Hasegawa, M, Yamada, K, Nagahama, Y, Somei, M 1999Chemistry of indoles. 94. A novel methodology for preparing 5-chloro- and 5-bromo-tryptamines and tryptophans and its application to the synthesis of (±)-bromochelonin BHeterocycles5128152821Google Scholar
  22. Holzapfel, CW, Gildenhuys, PJ 1977The synthesis of DL-β-cyclopiazonic acidS Afr J Chem30125127Google Scholar
  23. Hurt, CR, Lin, R, Rapoport, H 1999Enantiospecific synthesis of (R)-4-amino-5-oxo-1,3,4,5-tetrahydrobenz[cd]indole, an advanced intermediate containing the tricyclic core of the ergotsJ Org Chem64225233PubMedCrossRefGoogle Scholar
  24. Jimenez, EC, Craig, AG, Watkins, M, Hillyard, DR, Gray, WR, Gulyas, J, Rivier, J, Cruz, LJ, Olivera, BM 1997Bromocontryphan: post-translational bromination of tryptophanBiochemistry36989994PubMedCrossRefGoogle Scholar
  25. Jimenez, EC, Watkins, M, Olivera, BM 2004Multiple 6-bromotryptophan residues in a sleep-inducing peptideBiochemistry431234312348PubMedCrossRefGoogle Scholar
  26. Johnson, A-L, Bergman, J, Sjogren, M, Bohlin, L 2004Synthesis of barettinTetrahedron60961965CrossRefGoogle Scholar
  27. Kalume, DE, Stenflo, J, Czerwiec, E, Hambe, B, Furie, BC, Furie, B, Roepstorff, P 2000Structure determination of two conotoxins from Conus textile by a combination of matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization mass spectrometry and biochemical methodsJ Mass Spect35145156CrossRefGoogle Scholar
  28. Kang, J, Low, W, Norberg, T, Meisenhelder, J, Hansson, K, Stenflo, J, Zhou, GP, Imperial, J, Olivera, BM, Rigby, AC, Craig, AG 2004Total chemical synthesis and NMR characterization of the glycopeptide tx5a, a heavily post-translationally modified conotoxin, reveals that the glycan structure is a-D-Gal-(1-3)-a-D-GalNAcEur J Biochem/FEBS27149394949CrossRefGoogle Scholar
  29. Kobayashi J, Sato M, Murayama T, Ishibashi M, Walchi MR, Kanai M, Shoji J, Ohizumi Y (1991) Konbamide, a novel peptide with calmodulin antagonistic activity from the okinawan marine sponge Theonella sp. J Chem Soc Chem Commun: 1050–1052Google Scholar
  30. Konda-Yamada, Y, Okada, C, Yoshida, K, Umeda, Y, Arima, S, Sato, N, Kai, T, Takayanagi, H, Harigaya, Y 2002Convenient synthesis of 7′ and 6′-bromo-D-tryptophan and their derivatives by enzymatic optical resolution using D-aminoacylaseTetrahedron5878517861CrossRefGoogle Scholar
  31. Lehrer, RI, Tincu, JA, Taylor, SW, Menzel, LP, Waring, AJ 2003Natural peptide antibiotics from tunicates: structures, functions and potential usesIntegr Comp Biol43313322CrossRefGoogle Scholar
  32. Li, M, Lin, Z, Johnson, ME 1995Photoaffinity labeling of cyanomethemoglobin with derivatives of tryptophan and 5-bromotryptophanBiochem J308251260PubMedGoogle Scholar
  33. Lidgren, G, Bohlin, L, Bergman, J 1986Studies of Swedish marine organisms (vii). A novel biologically active indole alkaloid from the sponge Geodia baretti Tetrahedron Lett2732833284CrossRefGoogle Scholar
  34. Lieberknecht, A, Griesser, H 1987What is the structure of barettin? Novel synthesis of unsaturated diketopiperazinesTetrahedron Lett2842754278CrossRefGoogle Scholar
  35. Lirazan, MB, Craig, AG, Shetty, R, Walker, CS, Olivera, BM, Cruz, LJ 1999Multiple bromotryptophan and γ-carboxyglutamate residues in a Conus peptidePhilip J Sci128239246Google Scholar
  36. Liu, R, Zhang, P, Gan, T, Cook, JM 1997Regiospecific bromination of 3-methylindoles with NBS and its application to the concise synthesis of optically active unusual tryptophans present in marine cyclic peptidesJ Org Chem6274477456PubMedCrossRefGoogle Scholar
  37. Lotte, K, Plessow, R, Brockhinke, A 2004Static and time-resolved fluorescence investigations of tryptophan analogues – a solvent studyPhotochem Photobiol Sci3348359PubMedCrossRefGoogle Scholar
  38. Manavalan, P, Prabhakaran, M, Johnson, ME 1992Location of potential binding sites on deoxy hemoglobin for the design of antigelling agentsJ Mol Biol223791800PubMedCrossRefGoogle Scholar
  39. Mccaul C, Ludescher RD (1998) Phosphorescence from tryptophan and tryptophan analogs in the solid state. Proc of SPIE-Internat Soc Opt Engin 3256 (Advances in Optical Biophysics), pp 263–268Google Scholar
  40. McGeer, EG, McGeer, PL, Peters, DAV 1967Inhibition of brain tyrosine hydroxylase by 5-halotryptophansLife Sci622212232PubMedCrossRefGoogle Scholar
  41. Moon Y-C, Cao L, Tamilarasu N, Qi H, Choi S, Lennox WJ, Corson DT, Hwang S (2005) Preparation of carboline derivatives useful in the inhibition of angiogenesis. PTC Therapeutics, Inc., USA. PCT Int Appl, 205 ppGoogle Scholar
  42. Nagarathnam, D, Johnson, ME 1993A new synthesis of 5-bromo-DL-tryptophanSynt Commun2320112017CrossRefGoogle Scholar
  43. Ozarowski, A, Wu, JQ, Maki, AH 1998Study of complexes of a tryptophan-free mutant of E. coli trp aporepressor with tryptophan analogs using optically detected magnetic resonance (ODMR)FEBS Lett4225256PubMedCrossRefGoogle Scholar
  44. Phillips, RS, Cohen, LA 1983Synthesis of 2-bromo-L-tryptophan and 2-chloro-L-tryptophanTetrahedron Lett2455555558CrossRefGoogle Scholar
  45. Phillips, RS, Cohen, LA 1986Intramolecular general acid and general base catalyses in the hydrolysis of 2-halotryptophans and their analoguesJ Am Chem Soc10820232030CrossRefGoogle Scholar
  46. Plieninger, H, Sirowej, H 1971Introduction of dimethylallyl side chains into indole derivativesChem Ber10420272029CrossRefGoogle Scholar
  47. Poillon, WN 1982Noncovalent inhibitors of sickle hemoglobin gelation: effects of aryl-substituted alaninesBiochemistry2114001406PubMedCrossRefGoogle Scholar
  48. Prabhakaran M, Acharya SA, Khan SA, Ramnarayan K (2001) Bromotryptophan based antisickling peptides: design, synthesis and evaluation. In: Lebl M, Houghten RA (eds) Peptides: The wave of the future, Proceedings of the Second International and the Seventeenth American Peptide Symposium, San Diego, CA, USA, June 9–14, 2001. American Peptide Society, San Diego, pp 460–461Google Scholar
  49. Prasitpan, N, Johnson, ME, Currie, BL 19905-Bromo-DL-tryptophan and protected intermediates for peptide synthesisSynth Commun2034593466CrossRefGoogle Scholar
  50. Prasitpan, N, Patel, JN, De Croos, PZ, Stockwell, BL, Manavalan, P, Kar, L, Johnson, ME, Currie, BL 1992N-1 and C-2 substituted tryptophans as potential inhibitors of sickle cell hemoglobin gelationJ Heter Chem29335341CrossRefGoogle Scholar
  51. Raverty WD, Thomson RH, King TJ (1977) Metabolites from the sponge Pachymatisma johnstoni; L-6-bromohypaphorine, a new amino-acid and its crystal structure. J Chem Soc, Perkin Trans 1: Org Bio-Org Chem 1204–1211Google Scholar
  52. Rydon HN, Tweddle JC (1955) Experiments on the synthesis of bz-substituted indoles and tryptophans. III. The synthesis of four bz-chloroindoles and tryptophans. J Chem Soc: 3499–3503Google Scholar
  53. Schmidt, U, Lieberknecht, A, Griesser, H, Boekens, H 1982Total synthesis of tetraacetylclionamideTetrahedron Lett2349114914CrossRefGoogle Scholar
  54. Schmidt U, Wild J (1985) Syntheses of peptide alkaloids. 11. Amino acids and peptides. 51. Dehydroamino acids. 19. Total synthesis of hexaacetylcelenamide A. Liebigs Annal Chemie: 1882–1894Google Scholar
  55. Schmidt U, Lieberknecht A, Griesser H, Boekens H (1986) Amino acids and peptides, XLVIII. Total synthesis and biomimetic formation of clionamide derivatives. Liebigs Annal Chemie: 785–793Google Scholar
  56. Schmidt, U, Weinbrenner, S 1996Preparation of 2-bromo-5-hydroxytryptophansSynthesis12830CrossRefGoogle Scholar
  57. Shen, GQ, Baker, BJ 1994Biosynthetic studies of eudistomin H in the tunicate Eudistoma olivaceum Tetrahedron Lett3549234926CrossRefGoogle Scholar
  58. Shinnar AE, Uzzell T, Rao MN, Spooner E, Lane WS, Zasloff MA (1996) New family of linear antimicrobial peptides from hagfish intestine contains bromo-tryptophan as novel amino acid. In: Kaumaya PTP, Hodges RS (eds) Peptides: Chemistry, Structure and Biology, Proc Am Peptide Symp, 14th, Columbus, Ohio, June 18–23, pp 189–191Google Scholar
  59. Shinnar, AE, Butler, KL, Park, HJ 2003Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistanceBioorg Chem31425436PubMedCrossRefGoogle Scholar
  60. Shinnar AE (2003a) Hagfish cathelicidins: New insights into an ancient gene family and the role of protease resistance. Abst 36th Middle Atlantic Reg Meet Am Chem Soc Princeton, NJGoogle Scholar
  61. Shinnar AE, Ozcetinkaya S, Merrer DC (2005) Bromoindoles and bromotryptophan: red-shifted UV spectra and structure identification. Abstr, 230th ACS National Meeting, Washington, DCGoogle Scholar
  62. Sjogren, M, Goransson, U, Johnson, AL, Dahlstrom, M, Andersson, R, Bergman, J, Jonsson, PR, Bohlin, L 2004Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti J Natur Prod67368372CrossRefGoogle Scholar
  63. Solter, S, Dieckmann, R, Blumenberg, M, Francke, W 2002Barettin, revisited?Tetrahedron Lett4333853386CrossRefGoogle Scholar
  64. Spector, I, Braet, F, Shochet, NR, Bubb, MR 1999New anti-actin drugs in the study of the organization and function of the actin cytoskeletonMicrosc Res Tech471837PubMedCrossRefGoogle Scholar
  65. Steen, H, Mann, M 2002Analysis of bromotryptophan and hydroxyproline modifications by high-resolution, high-accuracy precursor ion scanning utilizing fragment ions with mass-deficient mass tagsAnal Chem7462306236PubMedCrossRefGoogle Scholar
  66. Swersey, JC, Ireland, CM, Cornell, LM, Peterson, RW 1994Eusynstyelamide, a highly modified dimer peptide from the ascidian Eusynstyela misakiensis J Natl Prod57842845CrossRefGoogle Scholar
  67. Taylor, SW, Kammerer, B, Nicholson, GJ, Pusecker, K, Walk, T, Bayer, E, Scippa, S, de Vincentiis, M 1997Morulin Pm: a modified polypeptide containing TOPA and 6-bromotryptophan from the morula cells of the ascidian Phallusia mammillata Arch Biochem Biophys348278288PubMedCrossRefGoogle Scholar
  68. Taylor, SW, Craig, AG, Fischer, WH, Park, M, Lehrer, RI 2000Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytesJ Biol Chem2753841738426PubMedCrossRefGoogle Scholar
  69. Tomasinsig, L, Zanetti, M 2005The cathelicidins – structure, function and evolutionCurr Protein Pept Sci62334PubMedCrossRefGoogle Scholar
  70. Walker, CS, Steel, D, Jacobsen, RB, Lirazan, MB, Cruz, LJ, Hooper, D, Shetty, R, DelaCruz, RC, Nielsen, JS, Zhou, LM, Bandyopadhyay, P, Craig, AG, Olivera, BM 1999The T-superfamily of conotoxinsJ Biol Chem2743066430671PubMedCrossRefGoogle Scholar
  71. Yokoyama, Y 1995Synthetic study of optically active indole alkaloidsYakugaku Kenkyu no Shinpo11163174Google Scholar
  72. Yokoyama, Y, Matsumoto, T, Murakami, Y 1995aOptically active total synthesis of clavicipitic acidJ Org Chem6014861487CrossRefGoogle Scholar
  73. Yokoyama Y, Okazuhiro K, Mitsuhashi M, Murakami Y (1996) Total synthesis of ergot alkaloid using optically active 4-bromotryptophan. The synthesis of chanoclavine-I. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 38th, pp 529–534Google Scholar
  74. Yokoyama, Y, Kondo, K, Mitsuhashi, M, Murakami, Y 1996aSynthetic studies on indole and related compounds. 42. Total synthesis of optically active chanoclavine-ITetrahedron Lett3793099312CrossRefGoogle Scholar
  75. Yokoyama, Y, Hikawa, H, Mitsuhashi, M, Uyama, A, Murakami, Y 1999Syntheses without protection: a three-step synthesis of optically active clavicipitic acid by utilizing biomimetic synthesis of 4-bromotryptophanTetrahedron Lett4078037806CrossRefGoogle Scholar
  76. Yokoyama, Y, Hikawa, H, Mitsuhashi, M, Uyama, A, Hiroki, Y, Murakami, Y 2001Total synthesis without using protecting groups: total synthesis of optically active clavicipitic acids using unprotected amino acidsTennen Yuki Kagobutsu Toronkai Koen Yoshishu43539544Google Scholar
  77. Yokoyama, Y, Hikawa, H, Mitsuhashi, M, Uyama, A, Hiroki, Y, Murakami, Y 2004Total synthesis without protection: three-step synthesis of optically active clavicipitic acids by a biomimetic routeEur J Org Chem612441253CrossRefGoogle Scholar
  78. Zabriskie, TM, Klocke, JA, Ireland, CM, Marcus, AH, Molinski, TF, Faulkner, DJ, Xu, C, Clardy, JC 1986Jaspamide, a modified peptide from a jaspis sponge with insecticidal and antifungal activityJ Am Chem Soc10831233124CrossRefGoogle Scholar
  79. Zhang, P, Liu, R, Cook, JM 1995A concise synthesis of optically active 2-bromotryptophan amino acids present in konbamide and jaspamide via a regiospecific bromination procedureTetrahedron Lett3691339136CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. Bittner
    • 1
  • R. Scherzer
    • 1
  • E. Harlev
    • 1
  1. 1.Department of ChemistryBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations