Skip to main content
Log in

Electron Spin Resonance of Lithium Related Donor Centers in Bulk Si1−xGex Crystals Enriched in 28Si and 72Ge Isotopes

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The lithium donor centers in Si1–xGex (x = 0.0039–0.05) single crystals enriched in spinless 28Si and 72Ge isotopes (99.998 and 99.984%, respectively) are studied by electron spin resonance at temperatures of T = 3.5–30 K and compared with its behavior in Si crystals. It is shown that lithium center with trigonal ([111]) symmetry has a most stable configuration in bulk Si1–xGex for different values of x < 5 at %. Axial symmetry is explained by the distortion of the lithium central position and their neighboring atoms. The spin relaxation rates were studied in temperature range 4–30 K and it was shown that transverse and longitudinal relaxation consist of two components with rates differ by almost an order of magnitude. Together with Raman processes for 1/T1, a decrease in the exponent below T5 is observed. This behavior is explained by cross-relaxation through states of the distorted configuration of lithium, which arise due to modulation of the crystal field potential by random distribution of Ge atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Materials and raw data are available upon request.

References

  1. J.J. Pla, K.Y. Tan, J.P. Dehollain et al., Nature 489, 541 (2012)

    Article  ADS  Google Scholar 

  2. E. Kawakami, P. Scarlino, D.R. Ward et al., Nat. Nanotechnol. 9, 666 (2014)

    Article  ADS  Google Scholar 

  3. A.K. Ramdas, S. Rodriguez, Rep. Prog. Phys. 44, 1297 (1981)

    Article  ADS  Google Scholar 

  4. A.J. Mayur, M.D. Sciacca, A.K. Ramdas, S. Rodriguez, Phys. Rev. B 48, 10893 (1993)

    Article  ADS  Google Scholar 

  5. Y. Song, O. Chalaev, H. Dery, Phys. Rev. Lett. 113, 167201 (2014)

    Article  ADS  Google Scholar 

  6. Y. Song, H. Dery, Phys. Rev. B 86, 085201 (2012)

    Article  ADS  Google Scholar 

  7. A.A. Ezhevskii, D.V. Guseinov, A.V. Soukhorukov et al., Phys. Rev. B 101, 195202 (2020)

    Article  ADS  Google Scholar 

  8. A.A. Ezhevskii, D.V. Guseinov, A.V. Soukhorukov et al., Phys. B 674, 415551 (2024)

    Article  Google Scholar 

  9. D.V. Guseinov, A.A. Ezhevskii, C.A.J. Ammerlaan, Phys. B 395, 65–68 (2007)

    Article  ADS  Google Scholar 

  10. V.V. Emtsev Jr., C.A.J. Ammerlaan, A.A. Ezhevskii et al., Phys. B 376–377, 45 (2006)

    Article  ADS  Google Scholar 

  11. D.V. Guseinov, A.A. Ezhevskii, C.A.J. Ammerlaan, Phys. B 381, 164–167 (2006)

    Article  ADS  Google Scholar 

  12. L.V.C. Assali, H.M. Petrilli, R.B. Capaz et al., Phys. Rev. B 83, 165301 (2011)

    Article  ADS  Google Scholar 

  13. A. Hollmann, PhD Thesis, December 2019 RWTH Aachen University

  14. A.A. Ezhevskii, P.G. Sennikov, D.V. Guseinov et al., Semiconductors 54, 1123 (2020)

    Article  ADS  Google Scholar 

  15. A.A. Ezhevskii, P.G. Sennikov, D.V. Guseinov et al., Semiconductors 54, 1336 (2020)

    Article  ADS  Google Scholar 

  16. G.D. Watkins, S.F. Ham, Phys. Rev. B 1, 4071 (1970)

    Article  ADS  Google Scholar 

  17. A.A. Ezhevskii, S.A. Popkov, A.V. Soukhorukov et al., Semiconductors 46, 1437 (2012)

    Article  ADS  Google Scholar 

  18. A.A. Ezhevskii, S.A. Popkov, A.V. Soukhorukov et al., Solid State Phenom. 205, 191 (2014)

    Google Scholar 

  19. A.A. Ezhevskii, A.V. Soukhorukov, D.V. Guseinov et al., Phys. B 404, 5063 (2009)

    Article  ADS  Google Scholar 

  20. A.A. Ezhevskii, A.P. Detochenko, S.A. Popkov et al., Solid State Phenom. 242, 322 (2016)

    Article  Google Scholar 

  21. D.K. Wilson, G. Feher, Phys. Rev. 124, 1068 (1961)

    Article  ADS  Google Scholar 

  22. H. Hasegawa, Phys. Rev. 118, 1523 (1960)

    Article  ADS  Google Scholar 

  23. L.M. Roth, Phys. Rev. 118, 1534 (1960)

    Article  ADS  Google Scholar 

  24. T.G. Castner, Phys. Rev. 155, 816 (1967)

    Article  ADS  Google Scholar 

  25. A. Abragam, B. Bleaney, Electron paramagnetic resonance of transition ions (Clarendon Press Oxford, 1970)

  26. K. Murakami, H. Kuribayashi, and K. Masuda Phys. Rev. B 38, 1589 (1988)

    Article  ADS  Google Scholar 

  27. K.L. Brower, Phys. Rev. B 26, 6040 (1982)

    Article  ADS  Google Scholar 

  28. W.A. Phillips, Rep. Prog. Phys. 50, 1657–1708 (1987)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Rosatom in the framework of the Roadmap for Quantum computing (Contract No. 868-1.3-15/15-2021 dated October 5, 2021 and Contract No. P2193 г. dated 14.12.2021 21).

Author information

Authors and Affiliations

Authors

Contributions

AAE and EAK: wrote the main text. DVG and AVS: carried out cw- ESR measuremnts and prepared Figs. 1, 2, 3, 6, 7, 8 and 9. DGZ and FFM: carried out pulsed -ESR measurements and prepared Figs. 4, 5. NVA: grew single crystals of 28Si1−x 72Gex. All authors reviewed the manuscript.

Corresponding author

Correspondence to D. V. Guseinov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.A., Guseinov, D.V., Soukhorukov, A.V. et al. Electron Spin Resonance of Lithium Related Donor Centers in Bulk Si1−xGex Crystals Enriched in 28Si and 72Ge Isotopes. Appl Magn Reson (2024). https://doi.org/10.1007/s00723-023-01640-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00723-023-01640-w

Navigation