Skip to main content
Log in

Improvement of Aspartate-Signal Fitting Accuracy in Asp-Edited MEGA-PRESS Spectra

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Changes in the aspartate (Asp) concentration are potential biomarkers of malate–aspartate shuttle dysfunction as well as the disturbances in the synthesis of NAA. J-difference editing can be utilized to detect a resolved Asp signal at δAsp ≈ 2.72 ppm. However, as this resonance has a complex shape, fitting of the Asp signal is challenging. In our study, we compare the performance of four Asp fitting models applied to data from three brain regions: the anterior cingulate gyrus (ACC), frontal white matter (DLPFA), and early visual cortex (VC). As a result, fitting with the phantom and simulated spectra can be recommended for robust Asp quantification spectra. This conclusion based on flexibility and suitability of these approaches for Asp fitting for all range of SNR. One gauss model shows the worst performance and could not be recommended for total Asp fitting. The absolute concentrations of Asp are quantified using a modified phantom calibration method. As a result, the estimated Asp concentrations are as close as possible to the biochemical estimations. The quantified Asp and tCr concentrations are, respectively, 1.69 ± 0.18 and 7.43 ± 0.71 for the ACC, 0.93 ± 0.14 and 5.86 ± 0.41 for the DLPFA, and 1.33 ± 0.35 and 8.4 ± 0.64 for the VC. Regional Asp variations in the brain are discovered; the Asp gray matter (GM) concentrations are higher than that in the white matter, and the Asp concentrations in the VC are significantly lower than that in the ACC, although the GM ratio is equal in all these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Project data is not available for public use.

Abbreviations

A-CoA:

Acetyl coenzyme A

ACC:

Anterior cingulate gyrus

Asp:

Aspartate

CSF:

Cerebrospinal fluid

CV:

Coefficient of variation

VC:

Early visual cortex

DLPFA:

Frontal white matter

FE:

Fitting error

FWHM:

Full width at half-maximum

GSH:

Glutathione

GM:

Gray matter

Asp-Nat:

L-Aspartate N-acetyltransferase

MAS:

Malate–aspartate shuttle

NAA:

N-Acetyl-aspartate

NAAG:

N-Acetyl-aspartyl glutamate

SNR:

Signal-to-noise

tCr:

Total creatine

WM:

White matter

GABA:

γ-Aminobutyric acid

References

  1. H. Chen, C. Wang, X. Wei, X. Ding, W. Ying, Malate-aspartate shuttle inhibitor aminooxyacetate acid induces apoptosis and impairs energy metabolism of both resting microglia and LPS-activated microglia. Neurochem. Res. 40, 1311–1318 (2015). https://doi.org/10.1007/S11064-015-1589-Y

    Article  Google Scholar 

  2. M.C. McKenna, H.S. Waagepetersen, A. Schousboe, U. Sonnewald, Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem. Pharmacol. 71, 399–407 (2006). https://doi.org/10.1016/J.BCP.2005.10.011

    Article  Google Scholar 

  3. B. Pardo, L. Contreras, J. Satrústegui, De novo synthesis of glial glutamate and glutamine in young mice requires aspartate provided by the neuronal mitochondrial aspartate-glutamate carrier Aralar/AGC1. Front. Endocrinol. (Lausanne). (2013). https://doi.org/10.3389/FENDO.2013.00149

    Article  Google Scholar 

  4. C. Wang, H. Chen, J. Zhang, Y. Hong, X. Ding, W. Ying, Malate-aspartate shuttle mediates the intracellular ATP levels, antioxidation capacity and survival of differentiated PC12 cells. Int. J .Physiol. Pathophysiol. Pharmacol. 6, 109–114 (2014)

    Google Scholar 

  5. J.R. Moffett, B. Ross, P. Arun, C.N. Madhavarao, A.M.A. Namboodiri, N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007). https://doi.org/10.1016/J.PNEUROBIO.2006.12.003

    Article  Google Scholar 

  6. M.H. Baslow, Functions of N-acetyl-l-aspartate and N-acetyl-l-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J. Neurochem. 75, 453–459 (2000). https://doi.org/10.1046/J.1471-4159.2000.0750453.X

    Article  Google Scholar 

  7. P.E. Menshchikov, N.A. Semenova, A.V. Manzhurtsev, T.A. Akhadov, S.D. Varfolomeev, Cerebral quantification of N-acetyl aspartate, aspartate, and glutamate levels in local structures of the human brain using J-editing of 1H magnetic resonance spectra in vivo. Russ. Chem. Bull. 67(4), 655–662 (2018). https://doi.org/10.1007/S11172-018-2119-2

    Article  Google Scholar 

  8. J.A. Stanley, M. Vemulapalli, J. Nutche, D.M. Montrose, J.A. Sweeney, J.W. Pettegrew, F.P. MacMaster, M.S. Keshavan, Reduced N-acetyl-aspartate levels in shizophrenia patients with a younger onset age: a single-voxel 1H spectroscopy study. Schizophr. Res. 93, 23 (2007). https://doi.org/10.1016/J.SCHRES.2007.03.028

    Article  Google Scholar 

  9. T.C. Ford, D.P. Crewther, A comprehensive review of the 1H-MRS metabolite spectrum in autism spectrum disorder. Front. Mol. Neurosci. (2016). https://doi.org/10.3389/FNMOL.2016.00014

    Article  Google Scholar 

  10. B. Herring, K. Silm, R. Edwards, R. Nicoll, Is aspartate an excitatory neurotransmitter? J. Neurosci. 35, 10168–10171 (2015). https://doi.org/10.1523/JNEUROSCI.0524-15.2015

    Article  Google Scholar 

  11. N. Ota, T. Shi, J.V. Sweedler, D-aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 43, 1873 (2012). https://doi.org/10.1007/S00726-012-1364-1

    Article  Google Scholar 

  12. K. Shibata, D. Imanishi, K. Abe, M. Suzuki, S. Takahashi, Y. Kera, d-Aspartate N-methyltransferase catalyzes biosynthesis of N-methyl-d-aspartate (NMDA), a well-known selective agonist of the NMDA receptor, in mice. Biochim. Biophys. Acta. Proteins Proteom. (2020). https://doi.org/10.1016/J.BBAPAP.2020.140527

    Article  Google Scholar 

  13. V. Govind, K. Young, A.A. Maudsley, Corrigendum to Proton NMR chemical shifts and coupling constants for brain metabolites [NMR Biomed. 13, (2000), 129-153]. NMR Biomed. 28, 923–924 (2015). https://doi.org/10.1002/NBM.3336

    Article  Google Scholar 

  14. M. Mescher, H. Merkle, J. Kirsch, M. Garwood, R. Gruetter, Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266–272 (1998). https://doi.org/10.1002/(sici)1099-1492(199810)11:6%3c266::aid-nbm530%3e3.0.co;2-j

    Article  Google Scholar 

  15. A.D. Harris, M.G. Saleh, R.A.E. Edden, Edited 1H magnetic resonance spectroscopy in vivo: methods and metabolites. Magn. Reson. Med. 77, 1377–1389 (2017). https://doi.org/10.1002/MRM.26619

    Article  Google Scholar 

  16. P. Menshchikov, A. Manzhurtsev, M. Ublinskiy, T. Akhadov, N. Semenova, T2measurement and quantification of cerebral white and gray matter aspartate concentrations in vivo at 3T: a MEGA-PRESS study. Magn. Reson. Med. 82, 11–20 (2019). https://doi.org/10.1002/MRM.27700

    Article  Google Scholar 

  17. K.L. Chan, M.G. Saleh, G. Oeltzschner, P.B. Barker, R.A.E. Edden, Simultaneous measurement of aspartate, NAA, and NAAG using HERMES spectral editing at 3 Tesla. Neuroimage 155, 587–593 (2017). https://doi.org/10.1016/J.NEUROIMAGE.2017.04.043

    Article  Google Scholar 

  18. S.C.N. Hui, H.J. Zöllner, G. Oeltzschner, R.A.E. Edden, M.G. Saleh, In vivo spectral editing of phosphorylethanolamine. Magn. Reson. Med. (2021). https://doi.org/10.1002/MRM.28976

    Article  Google Scholar 

  19. R.A.E. Edden, G. Oeltzschner, A.D. Harris, N.A.J. Puts, K.L. Chan, V.O. Boer, M. Schär, P.B. Barker, Prospective frequency correction for macromolecule-suppressed GABA editing at 3T. J. Magn. Reson. Imaging 44, 1474–1482 (2016). https://doi.org/10.1002/JMRI.25304

    Article  Google Scholar 

  20. R.A.E. Edden, N.A.J. Puts, A.D. Harris, P.B. Barker, C.J. Evans, Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J. Magn. Reson. Imaging 40, 1445–1452 (2014). https://doi.org/10.1002/JMRI.24478

    Article  Google Scholar 

  21. R. Rideaux, M. Mikkelsen, R.A.E. Edden, Comparison of methods for spectral alignment and signal modelling of GABA-edited MR spectroscopy data. Neuroimage 232, 117900 (2021). https://doi.org/10.1016/J.NEUROIMAGE.2021.117900

    Article  Google Scholar 

  22. R. Simpson, G.A. Devenyi, P. Jezzard, T.J. Hennessy, J. Near, Advanced processing and simulation of MRS data using the FID appliance (FID-A)—an open source, MATLAB-based toolkit. Magn. Reson. Med. 77, 23–33 (2017). https://doi.org/10.1002/MRM.26091

    Article  Google Scholar 

  23. V. Govindaraju, K. Young, A.A. Maudsley, Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 13(3), 129–153 (2000). https://doi.org/10.1002/1099-1492(200005)13:3%3c129::aid-nbm619%3e3.0.co;2-v

    Article  Google Scholar 

  24. F. SanaeiNezhad, A. Anton, E. Michou, J. Jung, L. Parkes, S. Williams, Quantification of GABA, glutamate and glutamine in a single measurement at 3 T using GABA-edited MEGA-PRESS. NMR Biomed. (2018). https://doi.org/10.1002/NBM.3847

    Article  Google Scholar 

  25. S. Quadrelli, C. Mountford, S. Ramadan, Hitchhiker’s guide to voxel segmentation for partial volume correction of in vivo magnetic resonance spectroscopy. Magn. Reson. Insights (2016). https://doi.org/10.4137/MRI.S32903

    Article  Google Scholar 

  26. S. Smith, M. Jenkinson, M. Woolrich, C. Beckmann, T. Behrens, H. Johansen-Berg, P. Bannister, M. De Luca, I. Drobnjak, D. Flitney, R. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J. Michael Brady, P.M. Matthews, Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage (2004). https://doi.org/10.1016/J.NEUROIMAGE.2004.07.051

    Article  Google Scholar 

  27. J.F.A. Jansen, W.H. Backes, K. Nicolay, M.E. Kooi, 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 240, 318–332 (2006). https://doi.org/10.1148/RADIOL.2402050314

    Article  Google Scholar 

  28. J. Near, A.D. Harris, C. Juchem, R. Kreis, M. Marjańska, G. Öz, J. Slotboom, M. Wilson, C. Gasparovic, Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts’ consensus recommendations. NMR Biomed. 34, e4257 (2021). https://doi.org/10.1002/NBM.4257

    Article  Google Scholar 

  29. R.B. Thompson, P. Allen, Sources of variability in the response of coupled spins to the PRESS sequence and their potential impact on metabolite quantificationtle. Magn. Reson. Med. 41(6), 1162–1169 (1999). https://doi.org/10.1002/(sici)1522-2594(199906)41:6%3c1162::aid-mrm12%3e3.0.co;2-n

    Article  Google Scholar 

  30. A.D. Harris, N.A.J. Puts, S.A. Wijtenburg, L.M. Rowland, M. Mikkelsen, P.B. Barker, C.J. Evans, R.A.E. Edden, R.H. Morgan, Normalizing data from GABA-edited MEGA-PRESS implementations at 3 Tesla HHS public access. Magn. Reson. Imaging 42, 8–15 (2017). https://doi.org/10.1016/j.mri.2017.04.013

    Article  Google Scholar 

  31. M. Grewal, A. Dabas, S. Saharan, P.B. Barker, R.A.E. Edden, P.K. Mandal, GABA quantitation using MEGA-PRESS: regional and hemispheric differences. J. Magn. Reson. Imaging (2016). https://doi.org/10.1002/jmri.25324

    Article  Google Scholar 

  32. Y. Li, D. Xu, E. Ozturk-Isik, J. Lupo, A.P. Chen et al., T1 and T2 metabolite relaxation times in normal brain at 3T and 7T. Mol. Imaging Dyn. (2012). https://doi.org/10.4172/2155-9937.S1-002

    Article  Google Scholar 

  33. N.A.J. Puts, P.B. Barker, R.A.E. Edden, Measuring the longitudinal relaxation time of GABA in vivo at 3 Tesla. J. Magn. Reson. Imaging. 37, 999–1003 (2013). https://doi.org/10.1002/JMRI.23817

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants, RFBR 19-29-10040 and RSF 18-1300030.

Author information

Authors and Affiliations

Authors

Contributions

All authors have the equal contribution in manuscript preparation.

Corresponding author

Correspondence to Petr Bulanov.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study is approved by the Ethics Committee of the Clinical and Research Institute of Emergency Pediatric Surgery and Trauma and conforms to the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans. In addition, we confirm that informed consent was obtained in each case.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Quantification of Asp Concentration

The cerebral Asp concentrations were calculated for the best fitting approach (simulated model spectral line) using a modified phantom calibration method [24]:

$$\left[ {{\text{Asp}}} \right] = \frac{{S_{{{\text{Asp}}}} }}{{S_{{{\text{Cr}}}} }} \times \frac{1}{a} \times \left[ {{\text{Cr}}} \right],$$
(3)

where \(S_{{{\text{Asp}}}}\) and \(S_{{{\text{Cr}}}}\) are the integral intensities of cerebral Asp and Cr, fitted by simulated model and Lorenz line, respectively, \(\left[ {{\text{Cr}}} \right]\) is the absolute Cr concentration calculated using formula (3), \({\text{and}} a\) is the linear regression coefficient of the calibration curve that forces the line to go through the (0,0) point (formula 2).

$$S_{{{\text{Asp }}\left( {{\text{phantom}}} \right)}} /S_{{{\text{Cr }}\left( {{\text{phantom}}} \right)}} \times \left[ {{\text{Cr}}} \right]_{{{\text{phantom}}}} = a \times \left[ {{\text{Asp}}} \right]_{{{\text{phantom}}}} .$$
(4)

Linear regression was performed based on Phantom study data. The y-axis represents the product of the known Cr concentration \(\left[ {{\text{Cr}}} \right]_{{\text{phantom }}}\) and the Asp-to-Cr integral intensity ratio \(S_{{{\text{Asp }}\left( {{\text{phantom}}} \right)}} /S_{{{\text{Cr }}\left( {{\text{phantom}}} \right)}}\) signal intensity, and the x-axis represents the known concentration of Asp in the Phantom \(\left[ {{\text{Asp}}} \right]_{{{\text{phantom}}}}\), as shown in (Fig. 4). The Cr concentration is constant at 18 mmol, whereas the Asp concentrations are 2, 3, 4, 5, 6, 8, 10, 12, 16, and 20 mM, forming a set of 11 experimental points. The spectra were collected using a 32-channel SENSE head quadrature coil. The edited Asp signal with δ ≈ 2.55–2.85 ppm in the phantom spectra was fitted with the simulated model. Substitution of the value of a value in Eq. (1) yields the final expression for Asp quantification:

$$\left[ {{\text{Asp}}} \right]_{{\text{in vivo}}} = \frac{{S_{{{\text{Asp}}\_{\text{in vivo}}}} }}{{S_{{{\text{Cr}}\_{\text{in vivo}}}} }} \times 3.82 \times \left[ {{\text{Cr}}} \right]_{{\text{in vivo}}} .$$
(5)
Fig. 4
figure 4

Ratio of aspartate (Asp) over the total creatine (tCr) multiplied by the known tCr concentration versus the known Asp phantom concentration. The coefficient of determination R2 = 0.987, p < 0.05

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulanov, P., Menshchikov, P., Manzhurtsev, A. et al. Improvement of Aspartate-Signal Fitting Accuracy in Asp-Edited MEGA-PRESS Spectra. Appl Magn Reson 54, 793–806 (2023). https://doi.org/10.1007/s00723-023-01560-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01560-9

Navigation