Skip to main content
Log in

Clustering into Three Groups on a Quantum Processor of Five Spins S = 1, Controlled by Pulses of Resonant RF Fields

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We consider a quantum processor based on five qutrits represented by spins S = 1, which is driven by radio frequency (RF) pulses selective in transitions between adjacent levels. Numerical simulation of the implementation of the quantum-adiabatic clustering algorithm was performed on the example of partitioning a set of six points into three groups. We find the amplitudes and durations of rectangular RF pulses, as well as the durations of free evolution intervals in the control pulse sequence, which made it possible to engineer a time-dependent effective Hamiltonian in the discrete-time approximation. Also we studied the dependence of the implementation fidelity on the parameters. We took quadrupole nuclei as qutrits, but the results obtained will be useful for controlling quantum processors based on qutrits represented by other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Result of this work obtained via numerical simulation. All necessary parameters represented in Sect. 5, 6.

References

  1. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions (Oxford Univ. Press, Oxford, 1987)

    Google Scholar 

  2. U. Haeberlen, High resolution NMR in solids. Selective averaging (Academic Press, New York, 1976)

    Google Scholar 

  3. B. N. Provotorov, E. B. Fel’dman, Sov. Phys. JETP 52, 1116 (1980). Zh. Eksp. Teor. Fiz. 79, 2206 (1980)

  4. N.E. Ainbinder, G.B. Furman, Sov. Phys. JETP 58(3), 575 (1983)

    ADS  Google Scholar 

  5. D.Y. Osokin, JETP 88(5), 868 (1999)

    Article  ADS  Google Scholar 

  6. M. Bukov, L. Dalessio, A. Polkovnikov, Adv Phys. 64(2), 139 (2015)

    Article  ADS  Google Scholar 

  7. E.I. Kuznetsova, E.B. Fel’dman, D.E. Feldman, Phys Usp 59(6), 577–582 (2016)

    Article  ADS  Google Scholar 

  8. A. Eckardt, Rev. Mod. Phys. 89(1), 011004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Choi, N.Y. Yao, M.D. Lukin, Phys. Rev. Lett. 119(18), 183603 (2017)

    Article  ADS  Google Scholar 

  10. M.F. O’Keeffe, L. Horesh, J.F. Barry, D.A. Braje, I.L. Chuang, New J. Phys. 21(2), 023015 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.P. Feynman, Int. J. Theor. Physics 21, 467 (1982)

    Article  Google Scholar 

  12. I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  13. J. Preskill, Quantum 2, 79 (2018)

    Article  Google Scholar 

  14. G.A. Bochkin, S.G. Vasil’ev, S.I. Doronin, E.I. Kuznetsova, I.D. Lazarev, E.B. Fel’dman, Appl. Magn. Resonance 51(7), 667 (2020)

    Article  Google Scholar 

  15. S.I. Doronin, E.B. Fel’dman, I.D. Lazarev, Phys. Let. A 406, 127458 (2021)

    Article  Google Scholar 

  16. T. Albash, D.A. Lidar, Rev. Mod. Phys. 90(1), 015002 (2018)

    Article  ADS  Google Scholar 

  17. V. Kumar, G. Bass, C. Tomlin, J. Dulny, Quantum Inf. Process. 17, 39 (2018)

    Article  ADS  Google Scholar 

  18. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  19. Y. Wang, Z. Hu, B.C. Sanders, S. Kais, Front Phys 8, 479 (2020)

    Google Scholar 

  20. D. Gottesman, A. Kitaev, J. Preskill, Phys. Rev. A 64(1), 012310 (2001)

    Article  ADS  Google Scholar 

  21. E.T. Campbell, Phys. Rev. Lett. 113, 230501 (2014)

    Article  ADS  Google Scholar 

  22. T.C. Ralph, K.J. Resch, A. Gilchrist, Phys. Rev. A 75, 022313 (2007)

    Article  ADS  Google Scholar 

  23. E.O. Kiktenko, A.S. Nikilaeva, G.V. Xu Peng, A.K. Shlyapnikov, Fedorov, Phys. Rev. A 101(2), 022304 (2020)

    Article  ADS  Google Scholar 

  24. S. Bravyi, A. Kliesch, R. Koenig, E. Tang, Quantum 6, 678 (2022)

    Article  Google Scholar 

  25. A. Muthukrishnan Jr., C.R. Stroud, Phys. Rev. A 62, 052309 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. B. Tamir, Phys. Rev. A 77(2), 022326 (2008)

    Article  ADS  Google Scholar 

  27. V.E. Zobov, D.I. Pekhterev, JETP Lett 89(5), 260 (2009)

    Article  ADS  Google Scholar 

  28. C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, C. Monroe, Phys. Rev. X 5(2), 021026 (2015)

    Google Scholar 

  29. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M.L. Markham, D.J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, J. Wrachtrup, Nat. Phys. 6, 249–253 (2010)

    Article  Google Scholar 

  30. J. Choi, S. Choi, G. Kucsko, P.C. Maurer, B.J. Shields, H. Sumiya, S. Onoda, J. Isoya, E. Demler, F. Jelezko, N.Y. Yao, M.D. Lukin, Phys. Rev. Lett. 118, 093601 (2017)

    Article  ADS  Google Scholar 

  31. Z. Xu, Z.Q. Yin, Q. Han, T. Li, Opt Mater Expr 9(12), 465 (2019)

    Article  Google Scholar 

  32. M.S. Blok, V.V. Ramasesh, T. Schuster, K. O’Brien, J.M. Kreikebaum, D. Dahlen, A. Morvan, B. Yoshida, N.Y. Yao, I. Siddiqi, Phys. Rev. X 11(2), 021010 (2021)

    Google Scholar 

  33. T. Roy, Z. Liy, E. Kapit, and D. I. Schuster, arXiv:2211.06523 [quant-ph] 12 Nov 2022

  34. V.E. Zobov, A.S. Ermilov, JETP 114(6), 923 (2012)

    Article  ADS  Google Scholar 

  35. V.E. Zobov, I.S. Pichkovskiy, Proc. SPIE (2018). https://doi.org/10.1117/12.2521253

    Article  Google Scholar 

  36. V.E. Zobov, I.S. Pichkovskiy, Quantum Inf. Process. 19, 342 (2020)

    Article  ADS  Google Scholar 

  37. V.E. Zobov, I.S. Pichkovskiy, Quantum Inf. Process. 21, 144 (2022)

    Article  ADS  Google Scholar 

  38. V.E. Zobov, I.S. Pichkovskiy, Proc. SPIE (2022). https://doi.org/10.1117/12.2622732

    Article  Google Scholar 

  39. C.P. Slichter, Principles of magnetic resonance, 2nd edn. (Springer-Veriag, New York, 1980)

    Google Scholar 

  40. R. Das, A. Kumar, Phys. Rev. A 68, 032304 (2003)

    Article  ADS  Google Scholar 

  41. R. Das, A. Mitra, S.V. Kumar, A. Kumar, Int J Quantum Inf. 1(3), 387–394 (2003)

    Article  Google Scholar 

  42. M.N. Leuenberger, D. Loss, Phys. Rev. B 68(16), 165317 (2003)

    Article  ADS  Google Scholar 

  43. V.E. Zobov, V.P. Shauro, JETP 113(2), 181 (2011)

    Article  ADS  Google Scholar 

  44. A.B. Klimov, R. Guzman, J.C. Retamal, C. Saavedra, Phys. Rev. A 67(6), 062313 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS” #20-1-5-41-1. We are grateful for their trust and assistance in research.

Funding

This work funded by the Theoretical Physics and Mathematics Advancement Foundation “BA-SIS” #20-1-5-41-1.

Author information

Authors and Affiliations

Authors

Contributions

Zobov V. E. wrote the main manuscript and Pichkovskiy I. S. prepared Figs. 1, 2, 3, 4 and implement simulation. All authors reviewed the manuscript.

Corresponding author

Correspondence to I. S. Pichkovskiy.

Ethics declarations

Conflict of Interest

Author don’t have competting interests.

Ethical Approval

In the course of writing and submission this work, not a single animal, except for the corresponding author, was harmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichkovskiy, I.S., Zobov, V.E. Clustering into Three Groups on a Quantum Processor of Five Spins S = 1, Controlled by Pulses of Resonant RF Fields. Appl Magn Reson 54, 661–677 (2023). https://doi.org/10.1007/s00723-023-01544-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01544-9

Navigation