Skip to main content
Log in

Pulsed Magnetization Reversal Two Dipole-Coupled Nanoparticles with Antiferromagnetic Ordering

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The dynamics of the response to the action of a short Gaussian pulse of the magnetic field of the total magnetic moment of two antiferromagnetically ordered nanoparticles, coupled by dipole–dipole interaction and differing in the value of uniaxial anisotropy, has been investigated. The dependence of the response duration on the pulse parameters has been established. The possibility of magnetization reversal of only one or only the other dipole (in this case, the magnetic moment of the system changes from 0 to \(\pm 2\)) or the magnetization reversal of both dipoles (the magnetic moment is preserved) when choosing the pulse duration and/or amplitude has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. R. Skomski, Nanomagnetics. J. Phys. 15(20), 841 (2003)

    Google Scholar 

  2. E. Meilikhov, R. Farzetdinova, Magnetic properties of two-dimensional random systems of ising dipoles. J. Magn. Magn. Mater. 268(1–2), 237–250 (2004)

    Article  ADS  Google Scholar 

  3. Y.P. Ivanov, A. Il’in, E. Pustovalov, L. Chebotkevich, Influence of induced anisotropy on the processes of magnetization reversal of cobalt circular nanodots. Phys. Solid State 52(8), 1694–1700 (2010)

    Article  ADS  Google Scholar 

  4. V. Kosobukin, B. Krichevtsov, Local field effects in magneto-optics of two-dimensional arrays of ferromagnetic nanoparticles. Phys. Solid State 52(4), 813–820 (2010)

    Article  Google Scholar 

  5. P. Bondarenko, A.Y. Galkin, B. Ivanov, Phase diagram of a two-dimensional square lattice of magnetic particles with perpendicular anisotropy. J. Exp. Theor. Phys. 112(6), 986–1003 (2011)

    Article  ADS  Google Scholar 

  6. A.A. Fraerman, Magnetic states and transport properties of ferromagnetic nanostructures. Phys.-Uspekhi 55(12), 1255 (2012)

    Article  ADS  Google Scholar 

  7. S. Dzian, B. Ivanov, Dynamics and stability of a linear cluster of spherical magnetic nanoparticles. J. Exp. Theor. Phys. 115(5), 854–865 (2012)

    Article  ADS  Google Scholar 

  8. S. Gudoshnikov, B.Y. Liubimov, A. Popova, N. Usov, The influence of a demagnetizing field on hysteresis losses in a dense assembly of superparamagnetic nanoparticles. J. Magn. Magn. Mater. 324(22), 3690–3694 (2012)

    Article  ADS  Google Scholar 

  9. T. Kiseleva, S. Zholudev, A. Novakova, T. Grigoryeva, The enhanced magnetodeformational effect in galfenol/polyurethane nanocomposites by the arrangement of particle chains. Compos. Struct. 138, 12–16 (2016)

    Article  Google Scholar 

  10. M.F. Hansen, P.E. Jönsson, P. Nordblad, P. Svedlindh, Critical dynamics of an interacting magnetic nanoparticle system. J. Phys. 14(19), 4901 (2002)

    Google Scholar 

  11. A. Shutyi, D. Sementsov, Dynamics of the magnetic moment of an anisotropic nanoparticle and a plane lattice in an alternating field. Phys. Solid State 60(12), 2471–2480 (2018)

    Article  ADS  Google Scholar 

  12. A. Shutyi, Regular and chaotic dynamics of the dipole moment of square dipole arrays. J. Exp. Theor. Phys. 118(6), 924–934 (2014)

    Article  ADS  Google Scholar 

  13. A.M. Shutyi, S.V. Eliseeva, D.I. Sementsov, Equilibrium state of planar arrays of magnetic dipoles in the presence of exchange interaction. Phys. Rev. B 91(2), 024421 (2015)

    Article  ADS  Google Scholar 

  14. A.M. Shuty, S.V. Eliseeva, D.I. Sementsov, Dynamics of the magnetic nanoparticles lattice in an external magnetic field. J. Magn. Magn. Mater. 464, 76–90 (2018)

    Article  ADS  Google Scholar 

  15. N. Eibagi, J.J. Kan, F.E. Spada, E.E. Fullerton, Role of dipolar interactions on the thermal stability of high-density bit-patterned media. IEEE Magn. Lett. 3, 4500204–4500204 (2012)

    Article  Google Scholar 

  16. E. Meilikhov, R. Farzetdinova, Effective field theory for disordered magnetic alloys. Phys. Solid State 56(4), 707–714 (2014)

    Article  ADS  Google Scholar 

  17. H. Schumacher, H.w schumacher, c. chappert, p. crozat, rc sousa, pp freitas, j. miltat, j. fassbender, b. hillebrands, Phys. Rev. Lett. 90, 017201 (2003)

  18. H. Schumacher, C. Chappert, R. Sousa, P. Freitas, J. Miltat, Quasiballistic magnetization reversal. Phys. Rev. Lett. 90(1), 017204 (2003)

    Article  ADS  Google Scholar 

  19. A. Kimel, B. Ivanov, R. Pisarev, P. Usachev, A. Kirilyuk, T. Rasing, Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5(10), 727–731 (2009)

    Article  Google Scholar 

  20. T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B. Ivanov, F. Nori, M. Fiebig, Spin oscillations in antiferromagnetic nio triggered by circularly polarized light. Phys. Rev. Lett. 105(7), 077402 (2010)

    Article  ADS  Google Scholar 

  21. A.Y. Galkin, B.A. Ivanov, Dynamics of antiferromagnets exposed to ultrashort magnetic field pulses. JETP Lett. 88(4), 249–253 (2008)

    Article  ADS  Google Scholar 

  22. Y.I. Dzhezherya, V. Yurchuk, K. Demishev, V.N. Korenivskii, Remagnetization of synthetic antiferromagnetic cells by a magnetic field pulse. J. Exp. Theor. Phys. 117(6), 1059–1065 (2013)

    Article  Google Scholar 

  23. A. Sukhov, J. Berakdar, Local control of ultrafast dynamics of magnetic nanoparticles. Phys. Rev. Lett. 102(5), 057204 (2009)

    Article  ADS  Google Scholar 

  24. Y.I. Dzhezherya, K. Demishev, V. Korenivskii, Kapitza problem for the magnetic moments of synthetic antiferromagnetic systems. J. Exp. Theor. Phys. 115(2), 284–288 (2012)

    Article  ADS  Google Scholar 

  25. A.M. Shutyi, D.I. Sementsov, Multistability of the magnetization reversal of a nanoparticle with cubic anisotropy. JETP Lett. 111(11), 619–626 (2020)

    Article  ADS  Google Scholar 

  26. A.G. Gurevich, G.A. Melkov, Magnetization oscillations and waves (CRC Press, London, 1996)

    Google Scholar 

  27. A.M. Shutyi, S.V. Eliseeva, D.I. Sementsov, Responses of an isolated anisotropic magnetic nanoparticle and nanoparticle lattice to a magnetic field pulse. Appl. Magn. Reson. 51, 409–429 (2020)

    Article  Google Scholar 

Download references

Funding

No funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

AS and DS wrote the main manuscript text and AS and SE prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Svetlana Eliseeva.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutyi, A., Eliseeva, S. & Sementsov, D. Pulsed Magnetization Reversal Two Dipole-Coupled Nanoparticles with Antiferromagnetic Ordering. Appl Magn Reson 54, 513–526 (2023). https://doi.org/10.1007/s00723-023-01530-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01530-1

Navigation