Skip to main content

Advertisement

Log in

Multinuclear MRI and MRS at 0.5 Tesla

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

This retrospective review presents the results of detecting MR signals (NMR spectra, NQR, and MR images) obtained on a clinical 0.5T MR scanner from nuclei other than protons (1H), namely isotopes 2H, 11B, 13C, 14N, 17O, 19F, 23Na, 35Cl, 29Si, and 31P. Also, we report here our latest developments in the field of 19F and 23Na MRI for medical, biological, and technological applications. The results were obtained without significant technical modifications of the MR scanner, with the addition of in-house built coils being the only change. Therefore, special attention in the article is paid to the technical aspects of the study. In this regard, we note the possibility to increase the effectiveness of multinuclear applications by adjusting frequency settings of the transceiver path, as in a typical clinical scanner they are optimized for the detection of only proton signals. The results of this work can be beneficial for the practical implementation of multinuclear applications at low field, have methodological value, and serve as a guidance (starting point) for research carried out on more advanced high-field equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C.H. Choi, Y.H. Ha, P. Veeraiah, J. Felder, K. Möllenhoff, N.J. Shah, J. Magn. Reson. 273, 28–32 (2016)

    Article  ADS  Google Scholar 

  2. J. Ruiz-Cabello, B.P. Barnett, P.A. Bottomley, J.W.M. Bulte, NMR Biomed. 24, 114–129 (2011)

    Article  Google Scholar 

  3. G. Madelin, J.-S. Lee, R.R. Regatte, A. Jerschow, Prog. Nucl. Magn. Reson. Spectrosc. 79, 14–47 (2014)

    Article  Google Scholar 

  4. E.M. Haacke, Magnetic Resonance Imaging: Physical Principles and Sequence Design, (Wiley, New York, 1999), p.944

    Google Scholar 

  5. K. Halbach, Nucl. Instrum. Methods 169, 1–10 (1980)

    Article  ADS  Google Scholar 

  6. C.Z. Cooley, M.W. Haskell, S.F. Cauley, C. Sappo, C.D. Lapierre, C.G. Ha, J.P. Stockmann, L.L. Wald, IEEE Trans. Magn. 54(1), 5100112 (2018)

    Article  Google Scholar 

  7. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  8. N. Anisimov, D. Volkov, M. Gulyaev, O. Pavlova, Yu. Pirogov, J. Phys. Conf. Ser. 677, 012005 (2016)

    Article  Google Scholar 

  9. O.S. Pavlova, N.V. Anisimov, L.L. Gervits, M.V. Gulyaev, V.N. Semenova, Yu.A. Pirogov, V.Y. Panchenko, Magn. Res. Med. 84(4), 2111–2123 (2020)

    Article  Google Scholar 

  10. N.V. Anisimov, O.S. Pavlova, Appl. Magn. Reson. 49, 523–532 (2018)

    Article  Google Scholar 

  11. N.V. Anisimov, M.V. Gulyaev, D.V. Volkov, O.S. Pavlova, Yu.A. Pirogov, Phys. Wave Phenom. 23(4), 304–310 (2015)

    Article  ADS  Google Scholar 

  12. N.V. Anisimov, A.A. Tarasova, O.S. Pavlova, D.V. Fomina, A.M. Makurenkov, G.E. Pavlovskaya, Yu.A. Pirogov, Appl. Magn. Reson. 52(3), 221–233 (2021)

    Article  Google Scholar 

  13. N.V. Anisimov, O.S. Pavlova, A.G. Agafonnikova, A.V. Kosenkov, D.V. Fomina, Appl. Magn. Reson. 50, 17–27 (2019)

    Article  Google Scholar 

  14. H.G. Dehmelt, H. Kruger, Naturwissenschaften 37, 111 (1950)

    Article  ADS  Google Scholar 

  15. M.L. Martin, G.J. Martin, NMR Basic Principles and Progress, 23 (Springer, Berlin, 1990)

    Google Scholar 

  16. A.W. Overhauser, Phys. Rev. 92, 411 (1953)

    Article  ADS  Google Scholar 

  17. G.A. Morris, R. Freeman, J. Am. Chem. Soc. 101(3), 760–762 (1979)

    Article  Google Scholar 

  18. D.M. Doddrell, D.T. Pegg, M.R. Bendall, J. Magn. Reson. 48, 323–327 (1982)

    ADS  Google Scholar 

  19. P. Perez, A. Santos, J.J. Vaquero, Magn. Reson. Mater. Phys. Biol. Med. 13, 109–117 (2001)

    Article  Google Scholar 

  20. M. Gutberlet, T.F. Kaireit, A. Voskrebenzev, F. Lasch, J. Freise, T. Welte, F. Wacker, J.M. Hohlfeld, J. Vogel-Claussen, Radiology 286(3), 1040–1051 (2018)

    Article  Google Scholar 

  21. N.V. Anisimov, Yu.A. Pirogov, J. Sci. Intens. Technol. 8(2–3), 83–87 (2007). (in Russian)

    Google Scholar 

  22. N.V. Anisimov, E.G. Sadykhov, O.S. Pavlova, D.V. Fomina, Yu.A. Pirogov, Appl. Magn. Reson. 50(10), 1149–1161 (2019)

    Article  Google Scholar 

  23. F. Wetterling, D.M. Corteville, R. Kalayciyan, A. Rennings, S. Konstandin, A.M. Nagel, H. Stark, L.R. Schad, Phys. Med. Biol. 57(14), 4555–4567 (2012)

    Article  Google Scholar 

  24. A.A. Tarasova, N.V. Anisimov, O.S. Pavlova, M.V. Gulyaev, I.A. Usanov, Yu.A. Pirogov, Modern Development of Magnetic Resonance. Abstracts of the International Conference, Kazan (2021), pp. 234–235

  25. N.V. Anisimov, A.A. Tarasova, I.A. Usanov, O.S. Pavlova, D.A. Cheshkov, Yu.A. Pirogov, Electromagn. Waves Electron. Syst. 26(5), 50–59 (2021)

    Google Scholar 

  26. N.V. Anisimov, A.A. Tarasova, I.A. Usanov, O.S. Pavlova, M.V. Gulyaev, Magnetic Resonance and its Applcations. Spinus-2022. Proceedings. Saint Petersburg State University (2022), pp. 54–56

  27. N.V. Anisimov, V.V. Shakhparonov, A.V. Romanov, A.A. Tarasova, I.A. Usanov, O.S. Pavlova, M.V. Gulyaev, Yu.A. Pirogov, Appl. Magn. Reson. (2022). https://doi.org/10.1007/s00723-022-01480-0

    Article  Google Scholar 

  28. M. Packard, R. Varian, Phys. Rev. 93, 941 (1954)

    Google Scholar 

  29. V.I. Chizhik, Yu.S. Chernyshev, A.V. Donets, V.V. Frolov, A.D. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, Berlin, 2014), p.782

    Book  Google Scholar 

  30. E.K. Zavoisky, J. Phys. Acad. Sci. USSR 8(6), 377–380 (1944)

    Google Scholar 

  31. F. Bloch, W.W. Hansen, M. Packard, Phys. Rev. 69, 680 (1946)

    Google Scholar 

  32. E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev. 69, 37–38 (1946)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was performed with the support of the Interdisciplinary Scientific and Educational Schools of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology» and «Photonic and quantum technologies. Digital medicine».

Funding

Pulmonary 19F MRI studies have been supported by Russian Science Foundation grant No. 21-75-10038. 23Na MRI studies have been supported by Russian Foundation for Basic Research grant No. 19-29-10015.

Author information

Authors and Affiliations

Authors

Contributions

NVA and YAP wrote the main manuscript text; OSP and MVG prepared Fig. 2; AAT and IAU prepared Fig. 4. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nikolay V. Anisimov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, N.V., Pavlova, O.S., Tarasova, A.A. et al. Multinuclear MRI and MRS at 0.5 Tesla. Appl Magn Reson 53, 1575–1585 (2022). https://doi.org/10.1007/s00723-022-01489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01489-5

Navigation