Skip to main content
Log in

Ventilation Study of the Human Lungs by 19F MRI at 0.5 Tesla

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

To show the feasibility of functional lung assessment by 19F MRI using low field (0.5 T) MRI scanner. One healthy volunteer participated in the studies. As a contrast for 19F pulmonary MRI, the gas mixture of 70% octafluorocyclobutane (OFCB) and 30% oxygen was used. 19F MR images of human lungs were obtained using 2D and 3D FSE methods. MRI data were used for volume reconstruction and for calculation of wash-in/-out and single-breath dynamics measurements. 19F 3D imaging provided information about gas distribution and lung volume assessment. The measured volume of the left and right parts of lungs were ≈1.7L and ≈1.8L, respectively. The wash-in/-out dynamics measurements determined that the effective time of gas washing in was 30 ± 5 s and washing out was 19 ± 4 s. Fractional ventilation was 29 ± 3% and 18 ± 2% for wash-in and wash-out processes, respectively. Dynamics of gas distribution during one breath cycle was analyzed. The calculated inspiration and expiration maps gave normalized effective times [rel. un.] for these stages- 0.95 ± 0.18 and 0.84 ± 0.15, respectively. Different 19F pulmonary MRI methods were implemented: 3D imaging, wash-in/-out dynamics and single respiratory cycle imaging. The results are agreed with known data and demonstrates possibility of ventilation assessment of the lungs at 0.5 Tesla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. X. Li, X. Cao, M. Guo, M. Xie, X. Liu, BMJ (2020). https://doi.org/10.1136/bmj.m237

    Article  Google Scholar 

  2. V. Hartwig, G. Giovannetti, N. Vanello, M. Lombardi, L. Landini, S. Simi, Int. J. Environ Res. Public Health (2009). https://doi.org/10.3390/ijerph6061778

    Article  Google Scholar 

  3. S.J. Kruger, S.K. Nagle, M.J. Couch, Y. Ohno, M. Albert, S.B. Fain, J. Magn. Reson. Imaging (2016). https://doi.org/10.1002/jmri.25002

    Article  Google Scholar 

  4. M.J. Couch, I.K. Ball, T. Li, M.S. Fox, B. Biman, M.S. Albert, J. Magn. Reson. Imaging (2019). https://doi.org/10.1002/jmri.26292

    Article  Google Scholar 

  5. J. Ruiz-Cabello, B.P. Barnett, P.A. Bottomley, J.W. Bulte, NMR Biomed. (2011). https://doi.org/10.1002/nbm.1570

    Article  Google Scholar 

  6. G.H. Mills, J.M. Wild, B. Eberle, E.J. Van Beek, Br. J. Anaesth. (2003). https://doi.org/10.1093/bja/aeg149

    Article  Google Scholar 

  7. A. Torres, S.K. Koskinen, H. Gjertsen, B. Fischler, Acta Radiol. (2017). https://doi.org/10.1177/0284185117690423

    Article  Google Scholar 

  8. Q. Hong, R. Cai, Q. Chen, S. Zhang, A. Ai, Y. Fu, Y. Kuang, J. Ultrasound Med. (2017). https://doi.org/10.7863/ultra.16.03041

    Article  Google Scholar 

  9. S. Chang, H.A. Lincoff, D.J. Coleman, Ophthalmology (1985). https://doi.org/10.1016/s0161-6420(85)33985-4

    Article  Google Scholar 

  10. E.J. Sigler, J.C. Randolph, S. Charles, J.I. Calzada, J. Ophthalmol. (2012). https://doi.org/10.1155/2012/230596

    Article  Google Scholar 

  11. A.W. Scholz, U. Wolf, M. Fabel, N. Weiler, C.P. Heussel, B. Eberle, M. David, W.G. Schreiber, Magn. Reson. Imaging (2009). https://doi.org/10.1016/j.mri.2008.08.010

    Article  Google Scholar 

  12. M. Hori, A. Hagiwara, M. Goto, A. Wada, S. Aoki, Invest Radiol. (2021). https://doi.org/10.1097/RLI.0000000000000810

    Article  Google Scholar 

  13. National Center for Biotechnology Information. PubChem Compound Summary for CID 8263, Octafluorocyclobutane. https://pubchem.ncbi.nlm.nih.gov/compound/Octafluorocyclobutane. Accessed 5 July 2022

  14. G.A. Peyman, C.M. Vygantas, T.O. Bennett, A.M. Vygantas, S. Brubaker, Arch Ophthalmol. (1975). https://doi.org/10.1001/archopht.1975.01010020530009

    Article  Google Scholar 

  15. O.S. Pavlova, N.V. Anisimov, L.L. Gervits, M.V. Gulyaev, V.N. Semenova, Y.A. Pirogov, V.Y. Panchenko, Magn Reson Med (2020). https://doi.org/10.1002/mrm.28270

    Article  Google Scholar 

  16. H.-U. Kauczor, M.O. Wielpütz, MRI of the Lung, 2nd edn., Diagnostic Imaging. (Springer International Publishing, 2018), https://www.springer.com/us/book/9783319426167

  17. K.M. Johnson, S.B. Fain, M.L. Schiebler, S. Nagle, Magn. Reson. Med. (2013). https://doi.org/10.1002/mrm.24570

    Article  Google Scholar 

  18. U. Wolf, A. Scholz, M. Terekhov, R. Koebrich, M. David, L.M. Schreiber, Magn. Reson. Med. (2010). https://doi.org/10.1002/mrm.22528

    Article  Google Scholar 

  19. T. Kuropatkina, O. Pavlova, M. Gulyaev, Y. Pirogov, A. Khutorova, S. Stvolinsky, N. Medvedeva, O. Medvedev, Antioxidants (2022). https://doi.org/10.3390/antiox11030549

    Article  Google Scholar 

  20. Y. Shepelytskyi, T. Li, V. Grynko, C. Newman, F.T. Hane, M.S. Albert, Magn. Reson. Med. (2021). https://doi.org/10.1002/mrm.28473

    Article  Google Scholar 

  21. M. Gutberlet, T.F. Kaireit, A. Voskrebenzev, F. Lasch, J. Freise, T. Welte, F. Wacker, J.M. Hohlfeld, J. Vogel-Claussen, Radiology (2018). https://doi.org/10.1148/radiol.2017170591

    Article  Google Scholar 

  22. A.V. Ouriadov, M.S. Fox, M.J. Couch, T. Li, I.K. Ball, M.S. Albert, Magn. Reson. Med. (2015). https://doi.org/10.1002/mrm.25406

    Article  Google Scholar 

  23. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  24. T.W. Ridler, S. Calvard, IEEE Trans. Sys. Man. Cyber. (1978). https://doi.org/10.1109/TSMC.1978.4310039

    Article  Google Scholar 

  25. M. Gutberlet, T.F. Kaireit, A. Voskrebenzev, A.L. Kern, A. Obert, F. Wacker, J.M. Hohlfeld, J. Vogel-Claussen, Acad. Radiol. (2019). https://doi.org/10.1016/j.acra.2018.10.021

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed with the support of the Interdisciplinary Scientific and Educational Schools of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology» and «Photonic and quantum technologies. Digital medicine».

Funding

The study has been supported by Russian Science Foundation grant No. 21-75-10038.

Author information

Authors and Affiliations

Authors

Contributions

Olga S. Pavlova, Nikolay V. Anisimov, Mikhail V. Gulyaev performed MRI studies. Olga S. Pavlova wrote the main manuscript text and prepared figures. Nikolay V. Anisimov performed raw data (k-space processing). Mikhail V. Gulyaev wrote Python programs for processing MR images. Lev L. Gervits and Yury A. Pirogov reviewed the manuscript.

Corresponding author

Correspondence to Olga S. Pavlova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors have no competing interests, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, O.S., Anisimov, N.V., Gulyaev, M.V. et al. Ventilation Study of the Human Lungs by 19F MRI at 0.5 Tesla. Appl Magn Reson 53, 1587–1595 (2022). https://doi.org/10.1007/s00723-022-01488-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01488-6

Navigation