Skip to main content
Log in

Polarization Effect in Electron Paramagnetic Resonance with Anisotropic Effective G-Tensor and Anisotropic Spin Relaxation

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A simple semi-classical model of magnetization dynamics based on Landau-Lifshits equation of motion with anisotropic effective g-tensor and anisotropic spin relaxation is proposed and applied to the case of electron paramagnetic resonance (EPR). In the Faraday geometry, the model predicts polarization effect consisting in strong dependence of the EPR line shape and magnitude on orientation of vector h of oscillating magnetization with respect to the crystal structure, so that EPR may be suppressed for some directions of h. The EPR with anisotropic parameters possesses specific magnetic oscillations, which are different from standard circular rotation of the magnetization vector around the direction of external magnetic field. In general case, the trajectory of the magnetization vector end is either elongated quasi-ellipse, the position of the main axis of which depends on the magnitude of the external magnetic field, or magnetic oscillations may acquire almost linear character. The model is successfully applied for the quantitative accounting of the polarization effect for EPR mode observed in CuGeO3 doped with 2% of Co impurity, which remained unexplained for more than 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  2. S.V. Demishev, A.V. Semeno, H. Ohta, S. Okubo, I.E. Tarasenko, T.V. Ishchenko, N.E. Sluchanko, Pis’ma v ZhETF 84, 305 (2006)

    Google Scholar 

  3. S.V. Demishev, A.V. Semeno, H. Ohta, S. Okubo, I.E. Tarasenko, T.V. Ishchenko, N.A. Samarin, N.E. Sluchanko, Phys. Solid State 49, 1295 (2007)

    Article  ADS  Google Scholar 

  4. A.V. Semeno, H. Ohta, S. Okubo, N.E. Sluchanko, I.E. Tarasenko, A.V. Kuznetsov, T.V. Ishchenko, S.V. Demishev, Appl. Magn. Reson. 33, 3 (2008)

    Article  Google Scholar 

  5. A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (Fizmatlit, Moscow, 1994 (CRC, New York, 1996)

    Google Scholar 

  6. M. Oshikawa, I. Affleck, Phys. Rev. Lett. 25, 5136 (1999)

    Article  ADS  Google Scholar 

  7. M. Oshikawa, I. Affleck, Phys. Rev. B: Condens. Matter 65, 134410 (2002)

    Article  ADS  Google Scholar 

  8. S. Miyashita, T. Yoshino, A. Ogasahara, J. Phys. Soc. Jpn. 68, 655 (1999)

    Article  ADS  Google Scholar 

  9. Y. Natsume, F. Sasagawa, M. Toyoda, I. Yamada, J. Phys. Soc. Jpn. 48, 50 (1980)

    Article  ADS  Google Scholar 

  10. I. Yamada, Y. Natsume, J. Phys. Soc. Jpn. 48, 58 (1980)

    Article  ADS  Google Scholar 

  11. Y. Natsume, F. Noda, F. Sasagawa, H. Kanzawa, J. Phys. Soc. Jpn. 52, 1427 (1983)

    Article  ADS  Google Scholar 

  12. S.V. Demishev, A.V. Semeno, H. Ohta, Appl. Magn. Reson. 52, 379 (2021)

    Article  Google Scholar 

  13. A.G. Maryasov, M.K. Bowman, J. Magn. Reson. 221, 69 (2012)

    Article  ADS  Google Scholar 

  14. A.G. Maryasov, M.K. Bowman, J. Magn. Reson. 233, 80 (2013)

    Article  ADS  Google Scholar 

  15. M.M. Glazov, E.L. Ivchenko, Semiconductors 42, 951 (2008)

    Article  ADS  Google Scholar 

  16. M. Mostovoy, D. Khomskii, J. Knoester, Phys. Rev. B 58, 8190 (1998)

    Article  ADS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SVD and AVS: wrote the text and designed figures. SVD: proposed the model and analyzed it general properties. AVS: applied the proposed model for explaining of the experimental data for CuGeO3 crystals doped with Co impurity.

Corresponding author

Correspondence to S. V. Demishev.

Ethics declarations

Conflict of Interest

The authors declare no competing financial or non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demishev, S.V., Semeno, A.V. Polarization Effect in Electron Paramagnetic Resonance with Anisotropic Effective G-Tensor and Anisotropic Spin Relaxation. Appl Magn Reson 53, 1505–1516 (2022). https://doi.org/10.1007/s00723-022-01487-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01487-7

Keyword

Navigation