Skip to main content
Log in

Theoretical Analysis of Multiple Quantum NMR Dynamics in One-Dimensional Inhomogeneous Spin Systems (\(s=1/2\))

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Multiple quantum (MQ) NMR dynamics in an inhomogeneous spin chain, where the distances between the various pairs of neighboring spins can be different, has been studied in the approximation of nearest-neighbor dipole–dipole interaction (DDI). Though the fermion spectrum after performing the Jordan-Wigner transformation is not known, this article shows that the MQ NMR spectrum consists of MQ coherences of orders 0 and ±2 only, and their intensities are determined by the system’s fermion spectrum. As an example application of the theory developed, we calculate MQ NMR spectra of uniform, alternated and doubly alternated (with three different dipolar coupling constants) spin chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article.

References

  1. J. Baum, M. Munowitz, A.N. Garroway, A. Pines, J. Chem. Phys. 83, 2015 (1985)

    Article  ADS  Google Scholar 

  2. J. Baum, A. Pines, J. Am. Chem. Soc. 108, 7447 (1986)

    Article  Google Scholar 

  3. J. Baum, K.K. Gleason, A. Pines et al., Phys. Rev. Lett. 56, 1377 (1986)

    Article  ADS  Google Scholar 

  4. G.B. Furman, V.M. Meerovich, V.L. Sokolovsky, Phys. Rev. A 78, 042301 (2008)

    Article  ADS  Google Scholar 

  5. G.B. Furman, V.M. Meerovich, V.L. Sokolovsky, Quantum Inf. Process. 8, 283 (2009)

    Article  Google Scholar 

  6. E.B. Fel’dman, A.N. Pyrkov, JETP Lett. 88, 398 (2008)

    Article  ADS  Google Scholar 

  7. E.B. Fel’dman, A.N. Pyrkov, A.I. Zenchuk, Philos. Trans. R. Soc. Lond. A 370, 4690 (2012)

    ADS  Google Scholar 

  8. H.G. Krojanski, D. Suter, Phys. Rev. Lett. 93, 090501 (2004)

    Article  ADS  Google Scholar 

  9. H.J. Cho, P. Capellaro, D.G. Cory et al., Phys. Rev. B 74, 224434 (2006)

    Article  ADS  Google Scholar 

  10. G.A. Bochkin, E.B. Fel’dman, S.G. Vasil’ev et al., Appl. Magn. Reson. 49, 25 (2018)

    Article  Google Scholar 

  11. V.E. Zobov, A.A. Lundin, Appl. Magn. Res. 52, 879 (2021)

    Article  Google Scholar 

  12. M. Gärtner, P. Hauke, A.M. Rey, Phys. Rev. Lett. 120, 040402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.I. Doronin, E.B. Fel’dman, I.D. Lazarev, Phys. Rev. A 100, 022330 (2019)

    Article  ADS  Google Scholar 

  14. G.A. Bochkin, S.G. Vasil’ev, S.I. Doronin et al., Appl. Magn. Reson. 51, 667 (2020)

    Article  Google Scholar 

  15. S.I. Doronin, I.I. Maksimov, E.B. Fel’dman, J. Exp. Theor. Phys. 91, 597 (2000)

    Article  ADS  Google Scholar 

  16. G. Cho, J.P. Yesinowski, J. Phys. Chem. 100, 15176 (1996)

    Google Scholar 

  17. P. Cappellaro, C. Ramanathan, D.G. Cory, Phys. Rev. Lett. 99, 250506 (2007)

    Article  ADS  Google Scholar 

  18. P. Cappellaro, C. Ramanathan, D.G. Cory, Phys. Rev. A 76, 032317 (2007)

    Article  ADS  Google Scholar 

  19. G.A. Bochkin, E.B. Fel’dman, S.G. Vasil’ev et al., Chem. Phys. Lett. 680, 56 (2017)

    Article  ADS  Google Scholar 

  20. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)

    Google Scholar 

  21. W.H. Zachariasen, H.A. Plettinger, M. Marezio, Acta Crystallogr. A 16(11), 1144 (1963)

    Article  Google Scholar 

  22. G.A. Bochkin, E.B. Fel’dman, E.I. Kuznetsova et al., J. Magn. Res. 319, 106816 (2020)

    Article  Google Scholar 

  23. E.B. Fel’dman, M.G. Rudavets, JETP Lett. 81, 47 (2005)

    Article  ADS  Google Scholar 

  24. E.I. Kuznetsova, E.B. Fel’dman, J. Exp. Theor. Phys. 102, 882 (2006)

    Article  ADS  Google Scholar 

  25. K.E. Feldman, J. Phys. A: Math. Gen. 39(5), 1039 (2006)

    Article  ADS  Google Scholar 

  26. P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928)

    Article  ADS  Google Scholar 

  27. E.B. Fel’dman, S. Lacelle, Chem. Phys. Lett. 253, 27 (1996)

    Article  ADS  Google Scholar 

  28. S.G. Vasil’ev, A.V. Fedorova, E.B. Fel’dman, Appl. Magn. Reson. 52, 831 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was done as a part of the state task (Registration No. AAAA-A19-119071190017-7). This work was partially supported by the Russian Foundation for Basic Research (Grant No. 20-03-00147).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. EBF wrote the first draft of the manuscript. GAB prepared the figures and edited the text. SGV edited the text. All authors reviewed the manuscript.

Corresponding author

Correspondence to G. A. Bochkin.

Ethics declarations

Conflict of interest

The authors declare no competing interests except funding as described in the Acknowledgements section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkin, G.A., Fel’dman, E.B. & Vasil’ev, S.G. Theoretical Analysis of Multiple Quantum NMR Dynamics in One-Dimensional Inhomogeneous Spin Systems (\(s=1/2\)). Appl Magn Reson 53, 1439–1448 (2022). https://doi.org/10.1007/s00723-022-01474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01474-y

Navigation