Skip to main content
Log in

Two-Pulse EPR COSY (Correlation Spectroscopy) Sequence: Feasibility for Distance Measurements in Biological Systems

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The feasibility of one-dimensional two-pulse correlation spectroscopy (COSY) Electron Paramagnetic Resonance (EPR) sequence for distance measurements in biological systems using nitroxide biradicals is investigated numerically at Ku-band. It is found that the COSY sequences can be exploited to measure distances between the two nitroxides in the range \(17.3 \AA \lesssim r \lesssim 47.0 \AA (0.5 \mathrm{MHz}\le d\le 10 \mathrm{MHz})\), where \(d=\frac{2}{3}D\), with \(D\) being the dipolar-coupling constant. Taking into account the dead time after the second pulse, it is found that the modulation depth can only be measured for \(0.5 \mathrm{MHz}\le d \le 7.0\) MHz. However, for \(d>7.0 \mathrm{MHz}\), for which a significant part of the initial signal is lost in the dead time, the Fourier transform of the observable part of the signal after the dead time as a function of \({t}_{1}-{t}_{d}\), where \({t}_{1}\) is the time of the echo after the second pulse and \({t}_{d}\) is the dead time, still provides undistorted Pake doublets centered at \(\pm d\). It is shown here numerically that the amplitudes of the Pake doublets of the COSY signal are the most intense, one-to-two orders of magnitude larger, as compared to those of the four-, five-, six- pulse double quantum coherence (DQC), two-pulse double quantum (DQ), and five-pulse DQM (double quantum modulation) sequences. Another advantage of the COSY technique is that it provides a measurement of \({T}_{2}^{S}\), the spin–spin relaxation time over the \(p=\pm 1\) coherence pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Saxena, J.H. Freed, Theory of double quantum two-dimensional electron spin resonance with application to distance measurements. J. Chem. Phys 107, 1317 (1997)

    Article  ADS  Google Scholar 

  2. S.K. Misra, P.P. Borbat, J.H. Freed, Calculation of double-quantum-coherence two-dimensional spectra: distance measurements and orientational correlations. Appl. Magn. Reson. 36, 237 (2009)

    Article  Google Scholar 

  3. P.P. Borbat, J.H. Freed, Double-Quantum ESR and Distance Measurements. Distance Measurements in Biological Systems by EPR (Springer, Boston, 2002), pp. 383–459

    Book  Google Scholar 

  4. P.P. Borbat, J.H. Freed, Pros and cons of pulse dipolar ESR: DQC and DEER. EPR Newslett. 17, 2–3 (2007)

    Google Scholar 

  5. A.M. Raitsimring, K.M. Salikhov, Electron spin echo method as used to analyze the spatial distribution of paramagnetic centers. Bull. Magn. Reson. 7(4), 184–217 (1985)

    Google Scholar 

  6. A.D. Milov, K.M. Salikhov, M.D. Shirov, Application of the double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids. Sov. Phys. Solid State 23, 565–569 (1981)

    Google Scholar 

  7. K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, The theory of electron spin-echo signal decay resulting from dipole-dipole interactions between paramagnetic centers in solids. J. Magn. Reson. 42(2), 255–276 (1969)

    ADS  Google Scholar 

  8. A.D. Milov, K.M. Salikhov, Y.D. Tsvetkov, Phase relaxation of hydrogen atoms stabilized in an amorphous matrix. Phys. Solid State 15(4), 802–806 (1973)

    Google Scholar 

  9. A.D. Milov, Y.D. Tsvetkov, F. Formaggio, M. Crisma, C. Toniolo, J. Raap, Self-assembling properties of membrane-modifying peptides studied by PELDOR and CW-ESR spectroscopies. J. Am. Chem. Soc 122(16), 3843–3848 (2000)

    Article  Google Scholar 

  10. A.D. Milov, Y.D. Tsvetkov, F. Formaggio, M. Crisma, C. Toniolo, J. Raap, The secondary structure of a membrane-modifying peptide in a supramolecular assembly studied by PELDOR and CW-ESR spectroscopies. J. Am. Chem. Soc 123(16), 3784–3789 (2001)

    Article  Google Scholar 

  11. A.D. Milov, Y.D. Tsvetkov, F. Formaggio, S. Oancea, C. Toniolo, J. Raap, Aggregation of spin labeled trichogin GA IV dimers: Distance distribution between spin labels in frozen solutions by PELDOR data. J. Phys. Chem. B 107(49), 13719–13727 (2003)

    Article  Google Scholar 

  12. A.D. Milov, B.D. Naumov, Y.D. Tsvetkov, The effect of microwave pulse duration on the distance distribution function between spin labels obtained by PELDOR data analysis. Appl. Magn. Reson. 26(4), 587 (2004)

    Article  Google Scholar 

  13. B. Joseph, A. Sikora, E. Bordignon, G. Jeschke, D.S. Cafiso, T.F. Prisner, Distance measurement on an endogenous membrane transporter in E. coli cells and native membranes using EPR spectroscopy. Angew. Chem. 127(21), 6294–6297 (2015)

    Article  ADS  Google Scholar 

  14. O. Krumkacheva, E. Bagryanskaya, EPR-based distance measurements at ambient temperature. J. Magn. Reson. 280, 117–126 (2017)

    Article  ADS  Google Scholar 

  15. P. Widder, J. Schuck, D. Summerer, M. Drescher, Combining site-directed spin labeling in vivo and in-cell EPR distance determination. Phys. Chem. Chem. Phys. 22(9), 4875–4879 (2020)

    Article  Google Scholar 

  16. G. Jeschke, The contribution of modern EPR to structural biology. Emerg. Top. Life Sci. 2(1), 9–18 (2018)

    Article  Google Scholar 

  17. J.J. Jassoy, A. Berndhäuser, F. Duthie, S.P. Kühn, G. Hagelueken, O. Schiemann, Versatile trityl spin labels for nanometer distance measurements on biomolecules in vitro and within cells. Angew. Chem. 129(1), 183–187 (2017)

    Article  ADS  Google Scholar 

  18. Y. Yang, F. Yang, Y.J. Gong, J.L. Chen, D. Goldfarb, X.C. Su, A reactive, rigid GdIII labeling tag for in-cell EPR distance measurements in proteins. Angew. Chem. Int. 56(11), 2914–2918 (2017)

    Article  Google Scholar 

  19. M.J. Lawless, A. Shimshi, T.F. Cunningham, M.N. Kinde, P. Tang, S. Saxena, Analysis of nitroxide-based distance measurements in cell extracts and in cells by pulsed ESR spectroscopy. Chem. Phys. Chem. 18(12), 1653–1660 (2017)

    Article  Google Scholar 

  20. Y. Yang, B.B. Pan, X. Tan, F. Yang, Y. Liu, X.C. Su, D. Goldfarb, In-cell Trityl–Trityl distance measurements on proteins. J. Phys. Chem. Lett. 11(3), 1141–1147 (2020)

    Article  Google Scholar 

  21. A.D. Milov, Y.D. Tsvetkov, Double electron-electron resonance in electron spin echo: conformations of spin-labeled poly-4-vinilpyridine in glassy solutions. Appl. Magn. Reson 12(4), 495–504 (1997)

    Article  Google Scholar 

  22. P.G. Fajer, L. Brown, L. Song, Practical Pulsed Dipolar ESR (DEER). ESR Spectroscopy in Membrane Biophysics (Springer, Boston, 2007), pp. 95–128

    Book  Google Scholar 

  23. D. Abdullin, F. Duthie, A. Meyer, E.S. Müller, G. Hagelueken, O. Schiemann, Comparison of PELDOR and RIDME for distance measurements between nitroxides and low-spin Fe (III) ions. J. Phys. Chem. B 119(43), 13534–13542 (2015). https://doi.org/10.1021/acs.jpcb.5b02118

    Article  Google Scholar 

  24. N. Stein, L. Mainali, J.S. Hyde, W.K. Subczynski, Appl. Magn. Reson. 50(7), 903–918 (2019)

    Article  Google Scholar 

  25. S. Pfenninger, W.E. Antholine, M.E. Barr, J.S. Hyde, P.M. Kroneck, W.G. Zumft, Biophys. J. 69(6), 2761–2769 (1995)

    Article  ADS  Google Scholar 

  26. S.K. Misra, H.R. Salahi, Relaxation in pulsed EPR: thermal fluctuation of spin-hamiltonian parameters of an electron-nuclear spin-coupled system in a malonic acid single crystal in a strong harmonic-oscillator restoring potential. Appl. Magn. Reson. 52, 247–261 (2021)

    Article  Google Scholar 

  27. G. Jeschke, A. Koch, U. Jonas, A. Godt, Direct conversion of EPR dipolar time evolution data to distance distributions. J. Magn. Reson. 155(1), 72–82 (2002)

    Article  ADS  Google Scholar 

  28. K. Halbmair, J. Wegner, U. Diederichsen, M. Bennati, Pulse EPR measurements of intramolecular distances in a topp-labeled transmembrane peptide in lipids. Biophys. J. 111(11), 2345–2348 (2016)

    Article  ADS  Google Scholar 

  29. J.E. Lovett, B.W. Lovett, J. Harmer, DEER-Stitch: Combining three-and four-pulse DEER measurements for high sensitivity, deadtime free data. J. Magn. Reson. 223, 98–106 (2012)

    Article  ADS  Google Scholar 

  30. J.M. Franck, R.P. Barnes, T.J. Keller, T. Kaufmann, S. Han, Active cancellation–a means to zero dead-time pulse EPR. J. Magn. Reson. 261, 199–204 (2015)

    Article  ADS  Google Scholar 

  31. D.J. Schneider, J.H. Freed, in Spin Labeling: Theory and Application. ed. by L.J. Berliner (Academic, New York, 1976). (Chap. 2)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Natural Sciences and Engineering Council of Canada for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Misra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, S.K., Salahi, H.R. Two-Pulse EPR COSY (Correlation Spectroscopy) Sequence: Feasibility for Distance Measurements in Biological Systems. Appl Magn Reson 53, 343–370 (2022). https://doi.org/10.1007/s00723-021-01447-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01447-7

Navigation