Skip to main content
Log in

Characterization of the Distribution of Spin–Lattice Relaxation Rates of Lipid Spin Labels in Fiber Cell Plasma Membranes of Eye Lenses with a Stretched Exponential Function

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The stretched exponential function (SEF) was used to analyze and interpret saturation recovery (SR) electron paramagnetic resonance (EPR) data obtained from spin-labeled porcine eye-lens membranes. This function has two fitting parameters: the characteristic spin–lattice relaxation rate (T1str−1) and the stretching parameter (β), which ranges between zero and one. When β =1, the function is a single exponential. It is assumed that the SEF arises from a distribution of single exponential functions, each described by a T1 value. Because T −11 s are determined primarily by the rotational diffusion of spin labels, they are a measure of membrane fluidity. Since β describes the distribution of T −11 s, it can be interpreted as a measure of membrane heterogeneity. The SEF was used to analyze SR data obtained from intact cortical and nuclear fiber cell plasma membranes extracted from the eye lenses of 2-year-old animals and spin labeled with phospholipid and cholesterol analogs. The lipid environment sensed by these probe molecules was found to be less fluid and more heterogeneous in nuclear membranes than in cortical membranes. Parameters T −11str and β were also used for a multivariate K-means cluster analysis of stretched exponential data. This analysis indicates that SEF data can be assigned accurately to clusters in nuclear or cortical membranes. In future work, the SEF will be applied to analyze data from human eye lenses of donors with differing health histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.K. Subczynski, M. Raguz, J. Widomska, Methods in molecular biology™ (methods and protocols), in Liposomes, ed. by V. Weissig (Humana Press, New York, Dordrecht, Heidelberg, London, 2010), p. 247

    Chapter  Google Scholar 

  2. W.K. Subczynski, J. Widomska, A. Wisniewska, A. Kusumi, Methods in Molecular Biology, in Lipid Rafts, ed. by T.J. McIntosh (Humana Press, Totowa, 2007), p. 143

    Chapter  Google Scholar 

  3. C. Mailer, R.D. Nielsen, B.H. Robinson, J. Phys. Chem. A 109(18), 4049–4061 (2005). https://doi.org/10.1021/jp044671l

    Article  Google Scholar 

  4. D. Marsh, J. Magn. Reson. 290, 38–45 (2018). https://doi.org/10.1016/j.jmr.2018.02.020

    Article  ADS  Google Scholar 

  5. L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski J. Magn. Reson. 212(2), 418–425 (2011). https://doi.org/10.1016/j.jmr.2011.07.022

    Article  ADS  Google Scholar 

  6. L. Mainali, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 226, 35–44 (2013). https://doi.org/10.1016/j.jmr.2012.11.001

    Article  ADS  Google Scholar 

  7. B. Robinson, D. Haas, C. Mailer, Science 263(5146), 490–493 (1994). https://doi.org/10.1126/science.8290958

    Article  ADS  Google Scholar 

  8. L. Mainali, T.G. Camenisch, J.S. Hyde, W.K. Subczynski, Appl. Magn. Reson. 48(11–12), 1355–1373 (2017). https://doi.org/10.1007/s00723-017-0921-x

    Article  Google Scholar 

  9. L. Mainali, W.J. O’Brien, W.K. Subczynski, Exp. Eye Res. 178, 72–81 (2019). https://doi.org/10.1016/j.exer.2018.09.020

    Article  Google Scholar 

  10. L. Mainali, M. Raguz, W.J. O’Brien, W.K. Subczynski, Exp. Eye Res. 97(1), 117–129 (2012). https://doi.org/10.1016/j.exer.2012.01.012

    Article  Google Scholar 

  11. M. Raguz, L. Mainali, W.J. O’Brien, W.K. Subczynski, Exp. Eye Res. 120, 138–151 (2014). https://doi.org/10.1016/j.exer.2014.01.018

    Article  Google Scholar 

  12. M. Raguz, L. Mainali, W.J. O’Brien, W.K. Subczynski, Exp. Eye Res. 132, 78–90 (2015). https://doi.org/10.1016/j.exer.2015.01.018

    Article  Google Scholar 

  13. M. Raguz, L. Mainali, W.J. O’Brien, W.K. Subczynski, Exp. Eye Res. 140, 179–186 (2015). https://doi.org/10.1016/j.exer.2015.09.006

    Article  Google Scholar 

  14. D.C. Johnston, Phys. Rev. B 74(18), 184430 (2006). https://doi.org/10.1103/physrevb.74.184430

    Article  ADS  Google Scholar 

  15. J. Klafter, M.F. Shlesinger, Proc. Natl. Acad. Sci. U.S.A. 83(4), 848–851 (1986). https://doi.org/10.1073/pnas.83.4.848

    Article  ADS  Google Scholar 

  16. J.C. Phillips, Rep. Prog. Phys. 59(9), 1133–1207 (1996). https://doi.org/10.1088/0034-4885/59/9/003

    Article  ADS  Google Scholar 

  17. M.J. East, D. Melville, A.G. Lee, Biochemistry 24(11), 2615–2623 (1985). https://doi.org/10.1021/bi00332a005

    Article  Google Scholar 

  18. P.C. Jost, O.H. Griffith, R.A. Capaldi, G. Vanderkooi, Proc. Natl. Acad. Sci. U.S.A. 70(2), 480–484 (1973). https://doi.org/10.1073/pnas.70.2.480

    Article  ADS  Google Scholar 

  19. N.J.P. Ryba, L.I. Horvath, A. Watts, D. Marsh, Biochemistry 26(11), 3234–3240 (1987). https://doi.org/10.1021/bi00385a045

    Article  Google Scholar 

  20. L. Mainali, M. Raguz, W.J. O’Brien, W.K. Subczynski, Curr. Eye Res. 42(5), 721–731 (2016). https://doi.org/10.1080/02713683.2016.1231325

    Article  Google Scholar 

  21. L.K. Li, D. Roy, A. Spector, Curr. Eye, Res. 5(2), 127–135 (1986)

  22. L.K. Li, L. So, A. Spector, J. Lipid Res. 26(5), 600–609 (1985)

    Google Scholar 

  23. L.K. Li, L. So, A. Spector, Biochim. Biophys. Acta 917(1), 112–120 (1987). https://doi.org/10.1016/0005-2760(87)90291-8

    Article  Google Scholar 

  24. M.C. Yappert, D. Borchman, Chem. Phys. Lipids 129(1), 1–20 (2004). https://doi.org/10.1016/j.chemphyslip.2003.12.003

    Article  Google Scholar 

  25. D.C. Beebe, in Adler's Physiology of the Eye: Clinical Application, ed. By P. L. Kaufman, & A. Alm (Mosby, St. Louis, 2003), p.117

  26. L. Huang, V. Grami, Y. Marrero, D. Tang, M.C. Yappert, V. Rasi, D. Borchman, Investig. Ophthalmol. Vis. Sci. 46(5), 1682–1689 (2005). https://doi.org/10.1167/iovs.04-1155

    Article  Google Scholar 

  27. C.A. Paterson, J. Zeng, Z. Husseini, D. Borchman, N.A. Delamere, D. Garland, J. Jimenez-Asensio, Curr. Eye Res. 16(4), 333–338 (1997). https://doi.org/10.1076/ceyr.16.4.333.10689

    Article  Google Scholar 

  28. R.J. Truscott, Ophthalmic Res. 32(5), 185–194 (2000). https://doi.org/10.1159/000055612

    Article  Google Scholar 

  29. M.C. Yappert, M. Rujoi, D. Borchman, I. Vorobyov, R. Estrada, Exp. Eye Res. 76(6), 725–734 (2003). https://doi.org/10.1016/s0014-4835(03)00051-4

    Article  Google Scholar 

  30. D. Borchman, W.C. Byrdwell, M.C. Yappert, Investig. Ophthalmol. Vis. Sci. 35(11), 3938–3942 (1994)

    Google Scholar 

  31. J.M. Deeley, T.W. Mitchell, X. Wei, J. Korth, J.R. Nealon, S.J. Blanksby, R.J. Truscott, ‎Biochim. Biophys. Acta 1781(6–7), 288–298 (2008). https://doi.org/10.1016/j.bbalip.2008.04.002

    Article  Google Scholar 

  32. M. Rujoi, R. Estrada, M.C. Yappert, Anal. Chem 76(6), 1657–1663 (2004). https://doi.org/10.1021/ac0349680

    Article  Google Scholar 

  33. M. Raguz, J. Widomska, J. Dillon, E.R. Gaillard, W.K. Subczynski, Biochim. Biophys. Acta. 1788(11), 2380–2388 (2009). https://doi.org/10.1016/j.bbamem.2009.09.005

    Article  Google Scholar 

  34. M. Rujoi, J. Jin, D. Borchman, D. Tang, M.C. Yappert, Investig. Ophthalmol. Vis. Sci. 44(4), 1634–1642 (2003). https://doi.org/10.1167/iovs.02-0786

    Article  Google Scholar 

  35. P.S. Zelenka, Curr. Eye Res. 3(11), 1337–1359 (1984)

    Article  Google Scholar 

  36. S. Bassnett, Y. Shi, G.F.J.M. Vrensen, Philos. Trans. Royal Soc. B 366(1568), 1250–1264 (2011). https://doi.org/10.1098/rstb.2010.0302

    Article  Google Scholar 

  37. T. Gonen, Y. Cheng, J. Kistler, T. Walz, J. Mol. Biol. 342(4), 1337–1345 (2004). https://doi.org/10.1016/j.jmb.2004.07.076

    Article  Google Scholar 

  38. J. Kistler, S. Bullivant, FEBS Lett 111(1), 73–78 (1980). https://doi.org/10.1016/j.jmb.2004.07.076

    Article  Google Scholar 

  39. N. Buzhynskyy, R.K. Hite, T. Walz, S. Scheuring, EMBO Rep. 8(1), 51–55 (2006). https://doi.org/10.1038/sj.embor.7400858

    Article  Google Scholar 

  40. N. Buzhynskyy, P. Sens, F. Behar-Cohen, S. Scheuring, New J. Phys. 13(8), 085016 (2011). https://doi.org/10.1088/1367-2630/13/8/085016

    Article  ADS  Google Scholar 

  41. M.J. Costello, T.J. McIntosh, J.D. Robertson, Investig. Ophthalmol. Vis. Sci. 30(5), 975–989 (1989)

    Google Scholar 

  42. I. Dunia, C. Cibert, X. Gong, C. Xia, M. Recouvreur, E. Levy, N. Kumar, H. Bloemendal, E. L. Benedetti, ‎Eur. J. Cell Biol. 85(8), 729–752 (2006). https://doi.org/10.1016/j.ejcb.2006.03.006

    Article  Google Scholar 

  43. J.R. Kuszak, R.K. Zoltoski, C.E. Tiedemann, Int. J. Dev. Biol. 48(8-9), 889–902 (2004). https://doi.org/10.1387/ijdb.041880jk

    Article  Google Scholar 

  44. G.A. Zampighi, S. Eskandari, J.E. Hall, L. Zampighi, M. Kreman, Exp. Eye Res. 75(5), 505–519 (2002)

    Article  Google Scholar 

  45. A.K. Jain, Pattern Recognit. Lett. 31(8), 651–666 (2010). https://doi.org/10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  46. M. Charrad, N. Ghazzali, V. Boiteau, A. Niknafs, J. Stat. Softw. 61(6), 1–36 (2014). https://doi.org/10.18637/jss.v061.i06

    Article  Google Scholar 

  47. G. Borgia, R. Brown, P. Fantazzini, J. Magn. Reson. 132(1), 65–77 (1998). https://doi.org/10.1006/jmre.1998.1387

    Article  Google Scholar 

  48. G. Borgia, R. Brown, P. Fantazzini, J. Magn. Reson. 147(2), 273–285 (2000). https://doi.org/10.1006/jmre.2000.2197

    Article  ADS  Google Scholar 

  49. D.G. Gardner, J.C. Gardner, G. Laush, W.W. Meinke, J. Chem. Phys. 31(4), 978–986 (1959). https://doi.org/10.1063/1.1730560

    Article  ADS  Google Scholar 

  50. A.U. Jibia, M.E. Salami, Int. J. Comput. Theory Eng. 4(5), 751–757 (2012). https://doi.org/10.7763/ijcte.2012.v4.571

    Article  Google Scholar 

  51. E. Yeramian, P. Claverie, Nature 326, 169–174 (1987). https://doi.org/10.1038/326169a0

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by NIH grants R01 EY015526, P41 EB001980, and P30 EY001931. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We are grateful to Douglas Ward of the Department of Biophysics at Medical College of Wisconsin for the consultations and advice on statistics that include but are not limited to cross plotting of variables and the proper form for axis labeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold K. Subczynski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, N., Mainali, L., Hyde, J.S. et al. Characterization of the Distribution of Spin–Lattice Relaxation Rates of Lipid Spin Labels in Fiber Cell Plasma Membranes of Eye Lenses with a Stretched Exponential Function. Appl Magn Reson 50, 903–918 (2019). https://doi.org/10.1007/s00723-019-01119-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01119-7

Navigation