Skip to main content
Log in

Mechanistic Study of Electron Spin Polarization Transfer in Covalent Donor–Acceptor-Radical Systems

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The mechanism of spin polarization transfer from a photogenerated spin-correlated radical pair to a stable radical was studied in a covalent donor-chromophore-acceptor-stable radical (D-C-A-R) system, where the donor (D) is 4-methoxyaniline (MeOAn), the chromophore (C) is 4-(N-piperidinyl)-naphthalene-1,8-dicarboximide (ANI), the acceptor (A) is naphthalene-1,8:4,5-bis(dicarboximide) (NDI) and the stable radical (R) is (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Experiments probed the effect of the spin–spin exchange interaction between D•+ and A•− as well as the charge recombination dynamics of D•+-C-A•− on spin polarization transfer from the D•+-C-A•− SCRP to R as a function of the dielectric environment in glassy media at cryogenic temperatures. The results show that spin polarization on R is generated by asymmetry in the charge recombination pathways rather than variations in the spin–spin exchange interaction between D•+ and A•−. These results inform design criteria for using an SCRP to spin polarize a third spin for potential applications in quantum information science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Contact corresponding author.

Code availability

Not applicable.

References

  1. A. Steane, Rep. Prog. Phys. 61(2), 117–173 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O'Brien, Nature 464 45–53 (2010)

  3. C.H. Bennett, D.P. DiVincenzo, Nature 404(6775) 247–255 (2000)

  4. L. Childress, M.V.G. Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer, M.D. Lukin, Science 314(5797) 281–285 (2006)

  5. M.H. Devoret, R.J. Schoelkopf, Science 339(6124) 1169–1174 (2013)

  6. L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414(6862), 413-418(2001)

  7. N. Gisin, R. Thew, Nat. Photonics 1(3), 165–171 (2007)

    Article  ADS  Google Scholar 

  8. G. Kothe, M. Lukaschek, T. Yago, G. Link, K.L. Ivanov, T.-S. Lin, J. Phys. Chem. Lett. 12(14), 3647–3654 (2021)

    Article  Google Scholar 

  9. S. Schmitt, T. Gefen, F.M. Stuerner, T. Unden, G. Wolff, C. Mueller, J. Scheuer, B. Naydenov, M. Markham, S. Pezzagna, J. Meijer, I. Schwarz, M. Plenio, A. Retzker, L.P. McGuinness, F. Jelezko, Science 356(6340), 832–837 (2017)

  10. M.R. Wasielewski, M.D.E. Forbes, N.L. Frank, K. Kowalski, G.D. Scholes, J. Yuen-Zhou, M.A. Baldo, D.E. Freedman, R.H. Goldsmith, T. Goodson III, M.L. Kirk, J.K. McCusker, J.P. Ogilvie, D.A. Shultz, S. Stoll, K.B. Whaley, Nat. Rev. Chem. 4(9) 490–504 (2020)

  11. C.-J. Yu, M.D. Krzyaniak, M.S. Fataftah, M.R. Wasielewski, D.E. Freedman, Chem. Sci. 10(6), 1702–1708 (2019)

    Article  Google Scholar 

  12. C.-J. Yu, S. von Kugelgen, M.D. Krzyaniak, W. Ji, W.R. Dichtel, M.R. Wasielewski, D.E. Freedman, Chem. Mater. 32(23), 10200–10206 (2020)

    Article  Google Scholar 

  13. S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, R.D. Rahimi, K. Sato, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, H. Hara, P. Carl, P. Hoefer, T. Takui, Angew. Chem., Int. Ed. 51(39) 9860–9864 (2012)

  14. J.H. Olshansky, J. Zhang, M.D. Krzyaniak, E.R. Lorenzo, M.R. Wasielewski, J. Am. Chem. Soc. 142(7), 3346–3350 (2020)

    Article  Google Scholar 

  15. J.N. Nelson, J. Zhang, J. Zhou, B.K. Rugg, M.D. Krzyaniak, M.R. Wasielewski, J. Chem. Phys. 152(1), 014503–014507 (2020)

  16. B.K. Rugg, M.D. Krzyaniak, B.T. Phelan, M.A. Ratner, R.M. Young, M.R. Wasielewski, Nat. Chem. 11(11), 981–986 (2019)

    Article  Google Scholar 

  17. G.L. Closs, M.D.E. Forbes, J.R. Norris Jr., J. Phys. Chem. 91(13), 3592–3599 (1987)

    Article  Google Scholar 

  18. A.J. Hoff, P.J. Hore, Chem. Phys. Lett. 108(1), 104–110 (1984)

    Article  ADS  Google Scholar 

  19. P.J. Hore, D.A. Hunter, C.D. McKie, A.J. Hoff, Chem. Phys. Lett. 137(6), 495–500 (1987)

    Article  ADS  Google Scholar 

  20. K.M. Salikhov, A.J. Van der Est, D. Stehlik, Appl. Magn. Reson. 16(1), 101–134 (1999)

    Article  Google Scholar 

  21. E.A. Weiss, E.T. Chernick, M.R. Wasielewski, J. Am. Chem. Soc. 126(8), 2326–2327 (2004)

    Article  Google Scholar 

  22. E.A. Weiss, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. A 107(19), 3639–3647 (2003)

    Article  Google Scholar 

  23. G. Jeschke, J. Matysik, Chem. Phys. 294(3), 239–255 (2003)

    Article  Google Scholar 

  24. A.J. Hoff, P. Gast, S.A. Dzuba, C.R. Timmel, C.E. Fursman, P.J. Hore, Spectrochim. Acta, Part A 54A(14), 2283–2293 (1998)

    Article  Google Scholar 

  25. J. Tang, J.R. Norris, Chem. Phys. Lett. 233(1-2), 192-200 (1995)

  26. J.N. Nelson, M.D. Krzyaniak, N.E. Horwitz, B.K. Rugg, B.T. Phelan, M.R. Wasielewski, J. Phys. Chem. A 121(11), 2241–2252 (2017)

    Article  Google Scholar 

  27. S.R. Greenfield, W.A. Svec, D. Gosztola, M.R. Wasielewski, J. Am. Chem. Soc. 118(28), 6767–6777 (1996)

    Article  Google Scholar 

  28. J.A. Jones, K. Maeda, P.J. Hore, Chem. Phys. Lett. 507(4–6), 269–273 (2011)

    Article  ADS  Google Scholar 

  29. K. Maeda, P. Liddell, D. Gust, P.J. Hore, J. Chem. Phys. 139(23) 234309 (2013)

  30. H. Mao, R.M. Young, M.D. Krzyaniak, M.R. Wasielewski, J. Phys. Chem. Lett. 12(9), 2213–2218 (2021)

    Article  Google Scholar 

  31. Q. Mi, E.T. Chernick, D.W. McCamant, E.A. Weiss, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. A 110(23), 7323–7333 (2006)

    Article  Google Scholar 

  32. M.T. Colvin, R. Carmieli, T. Miura, S. Richert, D.M. Gardner, A.L. Smeigh, S.M. Dyar, S.M. Conron, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. A 117(25), 5314–5325 (2013)

    Article  Google Scholar 

  33. J.R. Woodward, Prog. React. Kinet. Mech. 27(3), 165–207 (2002)

    Article  Google Scholar 

  34. R. Haberkorn, Mol Phys 32(5), 1491–1493 (1976)

    Article  ADS  Google Scholar 

  35. T.P. Fay, L.P. Lindoy, D.E. Manolopoulos, J Chem Phys 149(6) 064107 (2018)

  36. C. Blaettler, F. Jent, H. Paul, Chem. Phys. Lett. 166(4), 375–380 (1990)

    Article  ADS  Google Scholar 

  37. Y.E. Kandrashkin, A. van der Est, Chem. Phys. 151(18), 184301 (2019)

  38. Y. Kobori, M. Fuki, H. Murai, J. Phys. Chem. B 114(45), 14621–14630 (2010)

    Article  Google Scholar 

  39. R.A. Marcus, J. Chem. Phys. 43(2), 679–701 (1965)

    Article  ADS  Google Scholar 

  40. A. Weller, Z. Phys. Chem. 133(1) 93–98 (1982)

  41. Y. Kobori, S. Sekiguchi, K. Akiyama, S. Tero-Kubota, J. Phys. Chem. A 103, 5416–5424 (1999)

    Article  Google Scholar 

  42. E.M. Giacobbe, Q. Mi, M.T. Colvin, B. Cohen, C. Ramanan, A.M. Scott, S. Yeganeh, T.J. Marks, M.A. Ratner, M.R. Wasielewski, J. Am. Chem. Soc. 131(10), 3700–3712 (2009)

    Article  Google Scholar 

  43. M. Mayländer, S. Chen, E.R. Lorenzo, M.R. Wasielewski, S. Richert, J. Am. Chem. Soc. 143, 7050–7058 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the United States National Science Foundation under Award CHE-1900422.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Michael R. Wasielewski.

Ethics declarations

Conflicts of interest

The authors declare no conflicts or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3306 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Krzyaniak, M.D., Young, R.M. et al. Mechanistic Study of Electron Spin Polarization Transfer in Covalent Donor–Acceptor-Radical Systems. Appl Magn Reson 53, 949–961 (2022). https://doi.org/10.1007/s00723-021-01402-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01402-6

Navigation