Skip to main content
Log in

Molecular Optimization for Nuclear Spin State Control via a Single Electron Spin Qubit by Optimal Microwave Pulses: Quantum Control of Molecular Spin Qubits

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Quantum state control is one of the most important concepts in advanced quantum technology, emerging quantum cybernetics and related fields. Molecular open shell entities can be a testing ground for implementing quantum control technology enabling us to manipulate molecular spin quantum bits (molecular spin qubits). In well-designed molecular spins consisting of unpaired electron and nuclear spins, the electrons and nuclear spins can be bus and client qubits, respectively. Full control of molecular spin qubits, in which client spins interact via hyperfine coupling, is a key issue for implementing quantum computers (QCs). In solid-state QCs, there are two approaches to the control of nuclear client qubits, namely, direct control of nuclear spins by radio-wave (RF) pulses and indirect control via hyperfine interactions by microwave pulses applied to electron spin qubits. Although the latter is less popular in the literature, the indirectness has advantage of greatly reducing unnecessary interactions between a qubit system and its environment. In this work, we investigate molecular spin optimization to find optimal experimental conditions which can afford to achieve the high fidelity of quantum gates by the indirect control scheme. In the present quantum systems, one electron is directly controlled by pulsed ESR techniques without manipulating individual hyperfine resonance, but the states of two nuclear client spins are indirectly steered via hyperfine interactions. Single crystals of potassium hydrogen maleate (KHM) radical and 13C-labeled malonyl radical are chosen as typical molecular spin qubits which exemplify the importance of the symmetry of hyperfine tensors and their collinear properties. We have found that both the non-collinearity of the principal axes of hyperfine coupling tensors and the non-distinguishability/non-equivalency between nuclear spins are key issues which extremely reduce the gate fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. A. Aspuru-Guzik, A.D. Dutoi, P.J. Love, M. Head-Gordon, Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005)

    Article  ADS  Google Scholar 

  3. D.S. Abrams, S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys Rev Lett 83, 5162–5165 (1996)

    Article  ADS  Google Scholar 

  4. K. Sugisaki, S. Yamamoto, S. Nakazawa, K. Toyota, K. Sato, D. Shiomi, T. Takui, Quantum chemistry on quantum computers: a polynomial-time quantum algorithm for constructing the wave functions of open-shell molecules. J. Phys. Chem. A. 120, 6459–6466 (2016)

    Article  Google Scholar 

  5. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  6. S. Barz, E. Kashefi, A. Broadbent, J.F. Fitzsimons, A. Zeilinger, P. Walther, Demonstration of blind quantum computing. Science 335, 303–308 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. B.P. Lanyon, C. Hempel, D. Nigg, M. Muller, R. Gerritsma, F. Zahringer, P. Schindier, J.T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, C.F. Roos, Universal digital quantum simulation with trapped ions. Science 334, 57–61 (2011)

    Article  ADS  Google Scholar 

  8. N. Timoney, I. Baumgart, M. Johanning, A.F. Varon, M.B. Plenio, A. Retzker, C. Wunderlich, Quantum gates and memory using microwave-dressed states. Nature 476, 185–188 (2011)

    Article  ADS  Google Scholar 

  9. J.T. Barreiro, M. Muller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011)

    Article  ADS  Google Scholar 

  10. J.A. Jones, M. Mosca, R.H. Hansen, Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)

    Article  ADS  Google Scholar 

  11. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental realization of Shor’s Quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  ADS  Google Scholar 

  12. J. Baugh, O. Moussa, C.A. Ryan, A. Nayak, R. Laflamme, Experimental Implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Nature 438, 470–473 (2005)

    Article  ADS  Google Scholar 

  13. M. Mehring, J. Mende, Spin-bus Concept of Spin Quantum Computing. Phys Rev A 73, 052303 (2006)

    Article  ADS  Google Scholar 

  14. Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398, 786–788 (1999)

    Article  ADS  Google Scholar 

  15. L. Robledo, L. Childress, H. Bernien, B. Hansen, P.F.A. Alkemade, R. Hanson, High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011)

    Article  ADS  Google Scholar 

  16. X. Zhu, Y.W. Zhu, S. Murali, M.D. Stollers, R.S. Ruoff, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011)

    Article  ADS  Google Scholar 

  17. K.C. Nowack, M. Shafiei, M. Laforest, G.E.D.K. Prawiroatmodjo, L.R. Shreiber, C. Reichi, W. Wegscheider, L.M.K. Vandersypen, Single-shot correlations and two-qubit gate of solid-state spins. Science 333, 1269–1272 (2011)

    Article  ADS  Google Scholar 

  18. Object-oriented Magnetic Resonance; Classes and Objects, Calculations and Computations, ed. M. Mehring, V. A. Weberruss (Academic Press, San Diego, 2001)

  19. Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K. Sato, M. Kitagawa, K. Nakasuji, T. Takui, Triple-stranded metallo-helicates addressable as lloyd’s electron spin qubits. J. Am. Chem. Soc. 132, 6944–6946 (2010)

    Article  Google Scholar 

  20. H. Atsumi, S. Nakazawa, C. Dohno, K. Sato, T. Takui, K. Nakatani, Ligand-induced electron spin-assembly on a DNA tile. Chem. Commun 49, 6370–6372 (2013)

    Article  Google Scholar 

  21. S. Yamamoto, S. Nakazawa, K. Sugisaki, K. Maekawa, K. Sato, K. Toyota, D. Shiomi, T. Takui, Structural determination of a DNA oligomer for a molecular spin qubit lloyd model of quantum computers. Z. Physik. Chem. 231, 439–458 (2016)

    Article  Google Scholar 

  22. A. Fernandez, J. Ferrando-Soria, E.M. Pineda, F. Tuna, I.J. Vitorica-Yrezabal, C. Knappke, J. Ujima, C.A. Muryn, G.A. Timco, P.E. Barran, A. Ardavan, R.E.P. Winpenny, Making Hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits. Nat. Commun. 7, 10240 (2016)

    Article  ADS  Google Scholar 

  23. K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Höfer, T. Takui, Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits. J. Mater. Chem. 19, 3739–3754 (2009)

    Article  Google Scholar 

  24. T. Yoshino, S. Nishida, K. Sato, S. Nakazawa, R.D. Rahimi, K. Toyota, D. Shiomi, Y. Morita, M. Kitagawa, T. Takui, ESR and 1H-,19F-ENDOR/TRIPLE study of fluorinated diphenylnitroxides as synthetic bus spin-qubit radicals with client qubits in solution. J. Phys. Chem. Lett. 2, 449–453 (2011)

    Article  Google Scholar 

  25. S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, R. Rahimi, K. Sato, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, H. Hara, P. Carl, P. Höfer, T. Takui, A synthetic two-spin quantum Bit: g-engineered exchange-coupled biradical designed for controlled-NOT gate operations. Angew. Chem. Int. Ed. 124, 9998–10002 (2012)

    Article  ADS  Google Scholar 

  26. C.J. Wedge, G.A. Timco, E.T. Spielberg, R.E. George, F. Tuna, S. Rigby, E.J.L. McInnes, R.E.P. Winpenny, S.J. Blundell, A. Ardavan, Chemical engineering of molecular qubits. Phys Rev Lett 108, 107204 (2012)

    Article  ADS  Google Scholar 

  27. Electron Spin Resonance (ESR) Based Quantum Computing, Biological Magnetic Resonance, ed. T. Takui, L. Berliner, G. Hanson, vol. 31 (Springer, New York, 2016)

  28. J.J.L. Morton, A.M. Tyryshkin, A. Ardavan, K. Porfyrakis, S.A. Lyon, G.A.D. Briggs, High fidelity single qubit operations using pulsed electron paramagnetic resonance. Phys Rev Lett 95, 200501 (2005)

    Article  ADS  Google Scholar 

  29. M.S. Fataftah, J.M. Zadrozny, S.C. Coste, M.J. Graham, D.M. Rogers, D.E. Freedman, Presentation of membrane-anchored glycosphingolipids determined from molecular dynamics simulations and NMR paramagnetic relaxation rate enhancement. J. Am. Chem. Soc. 138, 1344–1388 (2016)

    Article  Google Scholar 

  30. D.K. Park, G. Feng, R. Rahimi, S. Labruyère, T. Shibata, S. Nakazawa, K. Sato, T. Takui, R. Laflamme, J. Baugh, Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling. Quantum Inf. Process. 14, 2435–2461 (2015). https://doi.org/10.1007/s11128-015-0985-1

    Article  ADS  MATH  Google Scholar 

  31. MYu. Volkov, K.M. Salikhov, Pulse protocols for quantum computing with electron spins as qubits. Appl. Magn. Reson. 41, 145–154 (2011)

    Article  Google Scholar 

  32. S. Yamamoto, S. Nakazawa, K. Sugisaki, K. Sato, K. Toyota, D. Shiomi, T. Takui, Adiabatic quantum computing with spin qubits hosted by molecules. Phys. Chem. Chem. Phys. 17, 2742–2749 (2015)

    Article  Google Scholar 

  33. P.E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T.E. Skinner, S.J. Glaser, T.F. Prisner, Shaped optimal control pulses for increased excitation bandwidth in EPR. J. Magn. Reson. 218, 49–58 (2012)

    Article  ADS  Google Scholar 

  34. P.E. Spindler, S.J. Glaser, T.E. Skinner, T.F. Prisner, Broadband inversion PELDOR spectroscopy with partially adiabatic shaped pulses. Angew Chem Int Ed 52, 3425–3429 (2013)

    Article  Google Scholar 

  35. A. Doll, G. Jeschke, Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses. J. Magn. Reson. 246, 18–26 (2014)

    Article  ADS  Google Scholar 

  36. D. Tannor, V. Kazakov, V. Orlov, in Time Dependent Quantum Molecular Dynamics, ed. J. Broeckhove and L. Lathouwers (NATO ASI, Ser. B, Plenum, New York, 1992)

  37. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005)

    Article  ADS  Google Scholar 

  38. Z. Wu, J. Li, W. Zheng, J. Luo, M. Feng, X. Peng, Experimental demonstration of the Deutsch-Jozsa algorithm in homonuclear multispin systems. Phys Rev A 84, 042312 (2011)

    Article  ADS  Google Scholar 

  39. N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, J. Du, Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys Rev Lett 108, 130501 (2012)

    Article  ADS  Google Scholar 

  40. J.S. Hodges, J.C. Yang, C. Ramanathan, D.G. Cory, Universal control of nuclear spins via anisotropic hyperfine interactions. Phys Rev A 78, 010303 (2008)

    Article  ADS  Google Scholar 

  41. Y. Zhang, C.A. Ryan, R. Laflamme, J. Baugh, Coherent control of two nuclear spins using the anisotropic hyperfine interaction. Phys Rev Lett 107, 170503 (2011)

    Article  ADS  Google Scholar 

  42. T. W. Borneman, D. G. Cory, Bandwidth-Limited Control and Ringdown Suppression in High-Q Resonators, arXiv: quantum-ph/1207.1139.

  43. S.F. Darlow, W. Cochran, The crystal structure of potassium hydrogen maleate. Acta Cryst. 14, 1250–1257 (1961)

    Article  Google Scholar 

  44. T. Cole, C. Heller, Hyperfine splittings in the (HOOC)C13H(COOH) radical. J. Chem. Phys. 34, 1085–1086 (1961)

    Article  ADS  Google Scholar 

  45. D. D’Alessandro, Introduction to Quantum Control and Dynamics (Taylor and Francis, Boca Raton, 2008)

    MATH  Google Scholar 

  46. D. Burgarth, K. Maruyama, M. Murphy, S. Montangero, T. Calarco, F. Nori, M.B. Plenio, Scalable quantum computation via local control of only two qubits. Phys Rev A 81, 040303 (2010)

    Article  ADS  MATH  Google Scholar 

  47. J.S. Hodges, J.C. Yang, C. Ramanathan, D.G. Cory, Universal control of nuclear spins via anisotropic hyperfine interactions. Phys Rev A 78, 010303 (2008)

    Article  ADS  Google Scholar 

  48. S. Machnes, U. Sander, S.J. Glaser, P. de Fouquières, A. Gruslys, S. Schirmer, T. Schulte-Herbrüggen, Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys Rev A 84, 022305 (2011)

    Article  ADS  Google Scholar 

  49. J. Nocedal, S.J. Wright, Numerical Optimization, 2nd edn. (Springer, New York, 2006)

    MATH  Google Scholar 

  50. H.C. Heller, T. Cole, Electron magnetic resonance of X-irradiated potassium hydrogen maleate. J. Am. Chem. Soc. 84, 4448–4451 (1962)

    Article  Google Scholar 

  51. A. Ueda, S. Suzuki, K. Yoshida, K. Fukui, K. Sato, T. Takui, K. Nakasuji, Y. Morita, Hexamethoxyphenalenyl as a possible quantum spin simulator: an electronically stabilized neutral pi radical with novel quantum coherence owing to extremely high nuclear spin degeneracy. Angew. Chemie. Int. Ed. 52, 4795–4799 (2013)

    Article  Google Scholar 

  52. M. Mehring, J. Mende, W. Scherer, Entanglement between an electron and a nuclear spin 1/2. Phys. Rev. Letters 90, 15300 (2003)

    Article  Google Scholar 

  53. C. Bonizzoni, A. Ghirri, S. Nakazawa, S. Nishida, K. Sato, T. Takui, M. Affronte, Transmission spectroscopy of molecular spin ensembles in the dispersive regime. Adv. Quantum Technol. (2021). https://doi.org/10.1002/qute.202100039

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by AOARD Scientific Project on "Quantum Properties of Molecular Nanomagnets" (Award No. FA2386-13-4029, 13-4030, 13-4031) and the AOARD Project on “Molecular Spins for Quantum Technologies” (Grant No. FA2386-17-1-4040). The support by JSPS Grants-in-Aid for Scientific Research (B) and (C) 26400400 and 26400422 from Ministry of Education, Culture, Sports, Science and Technology (Japan) is acknowledged. The support by JSPS KAKENHI Grant Numbers 17H03012 and 17K05840 is also acknowledged. The work was partially supported by Grants-in-Aid for Scientific Research on Innovative Areas (Quantum Cybernetics) from Ministry of Education, Culture, Sports, Science and Technology (Japan), and also by FIRST Quantum Information Processing Project, Cabinet Office, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elham Hosseini Lapasar, Kazunobu Sato or Takeji Takui.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shigeaki Nakazawa: Deceased on March 23, 2019.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2872 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, T., Yamamoto, S., Nakazawa, S. et al. Molecular Optimization for Nuclear Spin State Control via a Single Electron Spin Qubit by Optimal Microwave Pulses: Quantum Control of Molecular Spin Qubits. Appl Magn Reson 53, 777–796 (2022). https://doi.org/10.1007/s00723-021-01392-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01392-5

Navigation