Skip to main content
Log in

MRI Study of Temperature Dependence of Multi-exponential Transverse Relaxation Times in Tomato

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The effects of the temperature on the multi-exponential transverse relaxation signal of fruit tissues were studied by MRI at 1.5 T, with tomato as an example of fleshy fruits. The relative importance of chemical exchange mechanisms was investigated by comparing the results obtained from tomatoes with those obtained from aqueous solutions made up to simulate the vacuolar water pool. A more extended analysis of the effects of chemical exchanges on transverse relaxation time distributions was performed using the two-site Carver and Richards’s expression, by fitting the experimental dispersion curves with the theoretical model. At temperatures between 7 and 32 °C, the transverse relaxation signal in tomato pericarp was multi-exponential, indicating that cell membranes acted, at least partially, as barriers to diffusive exchanges of water molecules between cell compartments. Unexpectedly, the transition from two to three peaks in the T2 distribution occurred between 7 and 15 °C for most of the tomatoes analyzed. Further, the relaxation time of the vacuolar water pool of the tomato pericarp remained mostly stable with temperature, which was contrary to expectations when only chemical exchange mechanisms were taken into account. It was deduced that additional mechanisms compensated for the expected increase in T2 in the tomato pericarp. The hypotheses were discussed, in which the loss of the water magnetization at the membranes was assumed to be produced either by diffusive exchanges between compartments or by chemical exchanges between protons from water molecules and solid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All summary data are included in the article. Please contact the corresponding author for access to original images and data files.

References

  1. H. Van As, J. van Duynhoven, J. Magn. Reson. 229, 25 (2013)

    Article  ADS  Google Scholar 

  2. H. Adriaensen, M. Musse, S. Quellec, A. Vignaud, M. Cambert, F. Mariette, Magn. Reson. Imaging 31, 1677 (2013)

    Article  Google Scholar 

  3. L. Van Der Weerd, M.M.A.E. Claessens, C. Efdé, H. Van As, Plant Cell Environ. 25, 1539 (2002)

    Article  Google Scholar 

  4. M. Musse, K. Bidault, S. Quellec, B. Brunel, G. Collewet, M. Cambert, N. Bertin, Plant J. 180, 111600 (2020)

    Google Scholar 

  5. A. Raffo, R. Gianferri, R. Barbieri, E. Brosio, Food Chem. 89, 149 (2005)

    Article  Google Scholar 

  6. C. Sorin, F. Mariette, M. Musse, L. Leport, F. Cruz, J.-C. Yvin, Appl. Sci. 8, 943 (2018)

    Article  Google Scholar 

  7. B.P. Hills, K.P. Nott, Appl. Magn. Reson. 17, 521 (1999)

    Article  Google Scholar 

  8. B.P. Hills, B. Remigereau, Int. J. Food Sci. Technol. 32, 51 (1997)

    Article  Google Scholar 

  9. M. Mortensen, A.K. Thybo, H.C. Bertram, H.J. Andersen, S.B. Engelsen, J. Agric. Food Chem. 53, 5976 (2005)

    Article  Google Scholar 

  10. M.E. Gonzalez, D.M. Barrett, M.J. McCarthy, F.J. Vergeldt, E. Gerkema, A.M. Matser, H. Van As, J. Food Sci. 75, E417 (2010)

    Article  Google Scholar 

  11. R. Leforestier, F. Mariette, M. Musse, J. Magn. Reson. 322, 106872 (2020)

    Article  Google Scholar 

  12. P. Ilík, M. Špundová, M. Šicner, H. Melkovičová, Z. Kučerová, P. Krchňák, T. Fürst, K. Večeřová, K. Panzarová, Z. Benediktyová, New Phytol. 218, 1278 (2018)

    Article  Google Scholar 

  13. P. Ahmad, M.N.V. Prasad, Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change (Springer Science & Business Media, New York, 2011)

    Google Scholar 

  14. J. Osvald, N. Petrovic, J. Demsar, Acta Aliment. 30, 53 (2001)

    Article  Google Scholar 

  15. A. Adekunte, B. Tiwari, P. Cullen, A. Scannell, C. O’donnell, Food Chem. 122, 500 (2010)

    Article  Google Scholar 

  16. C. Agius, S. von Tucher, B. Poppenberger, W. Rozhon, MethodsX 5, 537 (2018)

    Article  Google Scholar 

  17. M.A. Stevens, A.A. Kader, M. Albright-Holton, J. Am. Soc. Hortic. Sci. 102, 689 (1977)

    Google Scholar 

  18. W.G. Hopkins, Introduction to Plant Physiology (Wiley, New York, 1999)

    Google Scholar 

  19. D. Rolin, P. Baldet, D. Just, C. Chevalier, M. Biran, P. Raymond, Funct. Plant Biol. 27, 61 (2000)

    Article  Google Scholar 

  20. L. Taiz, J. Exp. Biol. 172, 113 (1992)

    Article  Google Scholar 

  21. K. Shiratake, E. Martinoia, Plant Biotechnol. 24, 127 (2007)

    Article  Google Scholar 

  22. D.P. Almeida, D.J. Huber, Physiol. Plant. 105, 506 (1999)

    Article  Google Scholar 

  23. M. Musse, F. De Guio, S. Quellec, M. Cambert, S. Challois, A. Davenel, Magn. Reson. Imaging 28, 1525 (2010)

    Article  Google Scholar 

  24. F. Mariette, J. Guillement, C. Tellier, P. Marchal, Data Handling in Science and Technology (Elsevier, Amsterdam, 1996), p. 218

    Google Scholar 

  25. J. Snaar, H. Van As, Biophys. J. 63, 1654 (1992)

    Article  ADS  Google Scholar 

  26. D. Legland, M.F. Devaux, B. Bouchet, F. Guillon, M. Lahaye, J. Microsc. 247, 78 (2012)

    Article  Google Scholar 

  27. M. Lemaire-Chamley, F. Mounet, C. Deborde, M. Maucourt, D. Jacob, A. Moing, Metabolites 9, 93 (2019)

    Article  Google Scholar 

  28. M. Musse, K. Bidault, S. Quellec, B. Brunel, G. Collewet, M. Cambert, N. Bertin, Plant J. 105, 62 (2021)

    Article  Google Scholar 

  29. C. Sorin, M. Musse, F. Mariette, A. Bouchereau, L. Leport, Planta 241, 333 (2015)

    Article  Google Scholar 

  30. J.M. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  31. B.P. Hills, J. Chem. Soc. Faraday Trans. 86, 481 (1990)

    Article  Google Scholar 

  32. J. Carver, R. Richards, J. Magn. Reson. 6(1972), 89 (1969)

    ADS  Google Scholar 

  33. F.P. Duval, M. Cambert, F. Mariette, Appl. Magn. Reson. 28, 29 (2005)

    Article  Google Scholar 

  34. L. van der Weerd, M.M. Claessens, T. Ruttink, F.J. Vergeldt, T.J. Schaafsma, H. Van As, J. Exp. Bot. 52, 2333 (2001)

    Article  Google Scholar 

  35. A. Blicher, K. Wodzinska, M. Fidorra, M. Winterhalter, T. Heimburg, Biophys. J. 96, 4581 (2009)

    Article  ADS  Google Scholar 

  36. Y. Niu, Y. Xiang, Front. Plant Sci. 9, 915 (2018)

    Article  Google Scholar 

  37. G. Lester, E. Stein, J. Am. Soc. Hortic. Sci. 118, 223 (1993)

    Article  Google Scholar 

  38. M. Janicka-Russak, K. Kabała, A. Wdowikowska, G. Kłobus, J. Plant. Res. 125, 291 (2012)

    Article  Google Scholar 

  39. R. Leforestier, F. Mariette, M. Musse, J. Magn. Reson. 322, 106872 (2021)

    Article  Google Scholar 

  40. J. Hou, Y. Zhang, Y. Sun, N. Xu, Y. Leng, J. Food Sci. 83, 661 (2018)

    Article  Google Scholar 

  41. B. Hills, K. Wright, P.S. Belton, Mol. Phys. 67, 1309 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are most grateful to the PRISM core facility (Rennes-Angers, France) for its technical support and to the GIS Biogenouest.

Funding

This work was in part funded by the Région Bretagne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Musse.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

723_2021_1374_MOESM1_ESM.docx

Supplementary file 1. Transverse relaxation time distribution in the tomato pericarp at different temperatures (blue dash 7 °C, green dash 15 °C, yellow dash 24 °C, red dash 32 °C), calculated from MSE images (TR = 20 s, TE = 6.5 ms, pixel size = 1.22 mm2, and slice thickness = 5 mm). The data shown correspond to the tomatoes numbered 1–4 (left to right and top to bottom) analyzed in Experiment 2. (DOCX 100 KB)

723_2021_1374_MOESM2_ESM.docx

Supplementary file 2. Transverse relaxation dispersion curves for the acid (orange symbols pH 4.4) and neutral (red symbols pH 7.0) solutions and for water (blue symbols) at circle 8, diamond suit 15, cross 24 and square 32 °C. T2s were measured using the MSE sequence (TR = 20 s, TE = 6.5 ms, 256 echoes, pixel size = 1.22 mm2 and slice thickness = 5 mm). Solid lines show least square fits of the Carver–Richards model to the experimental data. (DOCX 23 KB)

Appendix

Appendix

The effects of chemical exchange between two spin species (a, b) in homogeneous sugar systems can be estimated using the theoretical dispersion curves (variation of relaxation rate with interpulse spacing of the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence) provided by the Carver and Richard’s equations and corrected by Hills [32, 41]:

  • \(\frac{1}{{T_{2} }} = - \frac{1}{{{\text{TE}}}}\ln \lambda _{1} ,\)

  • \(\ln \lambda _{1} = - {\text{TE}}\frac{{\alpha _{ + } }}{2} + \ln \left[ {\sqrt {D_{ + } \cdot \cos h^{2} \xi - D_{ - } \cdot \cos ^{2} \eta } + \sqrt {D_{ + } \cdot \sin h^{2} \xi + D_{ - } \cdot \sin ^{2} \eta } } \right],\)

    with:

  • TE: echo time (time between two 180° RF pulses)

  • \(\alpha _{ + } = \frac{1}{{T_{{2a}} }} + \frac{1}{{T_{{2b}} }} + k_{a} + k_{b} ,\)

  • \(\alpha _{ - } = \frac{1}{{T_{{2a}} }} - \frac{1}{{T_{{2b}} }} + k_{a} - k_{b} ,\)

  • \(T_{{2a}}\) and \(T_{{2b}}\): transverse relaxation times of the water protons and the exchangeable protons of the solute, respectively.

  • \(\tau _{a}\) and \(\tau _{b}\): lifetimes of states a and b, respectively.

  • \(k_{a} = \frac{1}{{\tau _{a} }}\) and \(k_{b} = \frac{1}{{\tau _{b} }}\): exchange rates at sites a and b, respectively \(\left( {k_{a} = \frac{{P_{b} }}{{P_{a} }}k_{b} } \right).\)

  • \(P_{a}\) and \(P_{b}\): fractions of the total proton population at sites a and b, respectively.

  • \(\left( {P_{a} = 1 - P_{b} } \right)\) and \(P_{b} = \frac{{{\text{number}}\;{\text{of}}\;{\text{exchangeable}}\;{\text{protons}}\;{\text{of}}\;{\text{the}}\;{\text{solute}}}}{{{\text{number}}\;{\text{of}}\;{\text{protons}}\;{\text{exchangeable}}\;{\text{in}}\;{\text{the}}\;{\text{solution}}\left( {{\text{solvent}} + {\text{solute}}} \right)}},\)

  • \(2D_{ + } = 1 + \frac{{\psi + 2\Delta \upomega ^{2} }}{{\sqrt {\left( {\psi ^{2} + \zeta ^{2} } \right)} }},\)

  • \(2D_{ - } = - 1 + \frac{{\psi + 2\Delta \upomega ^{2} }}{{\sqrt {\left( {\psi ^{2} + \zeta ^{2} } \right)} }},\)

  • \(\Delta \upomega = \omega _{b} - \omega _{a}\): chemical shift difference given in units of radial frequency rad s−1.

  • \(\psi = \alpha _{ - }^{2} - \Delta \upomega ^{2} + 4k_{a} k_{b} ,\)

  • \(\zeta = 2\Delta \upomega \cdot \alpha _{ - } ,\)

  • \(\xi = \left( {\frac{{{\text{TE}}}}{{2\sqrt 2 }}} \right)\left[ {\psi + \left( {\psi ^{2} + \zeta ^{2} } \right)^{{\frac{1}{2}}} } \right]^{{\frac{1}{2}}} ,\)

  • \(\eta = \left( {\frac{{{\text{TE}}}}{{2\sqrt 2 }}} \right)\left[ { - \psi + \left( {\psi ^{2} + \zeta ^{2} } \right)^{{\frac{1}{2}}} } \right]^{{\frac{1}{2}}} .\)

    The chemical shift \(\Delta \upomega\) is given in units of radial frequency (rad s−1): \(\Delta \upomega = 2\pi \times B_{0} \times \updelta \upomega\), where δω is the chemical shift difference between the two sites a and b in ppm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leforestier, R., Mariette, F. & Musse, M. MRI Study of Temperature Dependence of Multi-exponential Transverse Relaxation Times in Tomato. Appl Magn Reson 52, 1543–1560 (2021). https://doi.org/10.1007/s00723-021-01374-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01374-7

Navigation