Skip to main content
Log in

Advanced MRI-Methods for Evaluation of Parkinson’s Disease

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Biopsies revealed an increased iron content in the dopaminergic neurons of nigrosomes in substantia nigra for Parkinson’s disease. In gradient echoes paramagnetic iron leads to a negative phase shift in the complex signal. The combination of magnitude and phase images allows to obtain susceptibility-weighted images (SWI) and quantitative susceptibility maps (QSM) which highlight the resulting susceptibility changes and allow selective imaging of the substantia nigra. The pigment neuromelanin in substantia nigra can be imaged separately by magnetization transfer. Both methods serve as biomarkers for Parkinson’s disease and confirm the disintegration of neuromelanin by iron compounds as the origin of the disease. Another application of MRI in Parkinson’s disease is the control of the localization of implanted electrodes for therapy using deep brain stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(reproduced from Refs. [1, 2])

Fig. 3

Reproduced from Wikipedia “Susceptibility—questions and answers in MRI”

Fig. 4

Reproduced from Ref. [4]

Fig. 5

(reproduced from Ref. [5])

Fig. 6

(reproduced from Ref. [4]) (Color figure online)

Fig. 7

reproduced from Refs. [8, 9]

Fig. 8

(reproduced from Ref. [10]) (Color figure online)

Fig. 9

reproduced from Ref. [11]

Fig. 10

(reproduced from Ref. [4])

Fig. 11

Reproduced from Ref. [10]

Fig. 12

Reproduced from Ref. [17]

Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E.M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, Y.-C.N. Cheng, Am. J. Neuroradiol. 30(1), 19 (2009)

    Article  Google Scholar 

  2. S. Mittal, Z. Wu, J. Neelavalli, E.M. Haacke, Am. J. Neuroradiol. 30, 232 (2009)

    Article  Google Scholar 

  3. E.M. Haacke, Y. Xu, Y.-C.N. Cheng, J.R. Reichenbach, Mag. Reson. Med. 52, 612–618 (2004)

    Article  Google Scholar 

  4. C. Liu, H. Wei, N.-J. Gong, M. Cronin, R. Dibb, K. Decker, Tomography 1(1), 3–17 (2015)

    Article  Google Scholar 

  5. J. Liu, T. Liu, L. de Rochefort, J. Ledoux, I. Khalidov, W. Chen, A.J. Tiouris, C. Wisnieff, P. Spincemaille, M.R. Prince, Y. Wang, Neuroimage 59(3), 2560–2568 (2012)

    Article  Google Scholar 

  6. F. Schweser, A. Deistung, B.W. Lehr, J.R. Eciehnbach, Neuroimage 54, 2789 (2011)

    Article  Google Scholar 

  7. A. Warton, R. Bowtell, Neuroimage 53, 515 (2010)

    Article  Google Scholar 

  8. N. Krebs et al., Proc. Intl. Soc. Mag. Reson. Med. 18, 702 (2010)

    Google Scholar 

  9. G. Du, T. Liu, M.M. Lewis, J. Vesek, L. Kon, M. Styner, Q.X. Yang, X. Huang, Proc. Intl. Soc. Mag. Reson. Med. 22, 1912 (2014)

    Google Scholar 

  10. M. Brammerloh, E. Kirilina, R. Sibgatulin, K.-H. Herrmann, T. Reinert, C. Jäger, Pelicon, P. Vavpetič, K.J. Pine, A. Deistung, M. Morawski, J.R. Reichenbach, N. Weiskopf, Proc. Intl. Soc. Mag. Reson. Med. 28, 0160 (2020)

    Google Scholar 

  11. K. Mi Lee, H.-G. Kim, Proc. Intl. Soc. Mag. Reson. Med. 24, 1249 (2016)

    Google Scholar 

  12. Z. Cheng, Y. Li, M. Jokar, S.K. Sethi, W. Chen, S. Chen, F. Yan, E.M. Haacke, Proc. Intl. Soc. Mag. Reson. Med. 28, 0201 (2020)

    Google Scholar 

  13. P.J. Basser, C. Pierpaoli, J. Magn. Reson. ser. B 111, 209–219 (1996)

    Article  Google Scholar 

  14. R. Patriat, J. Kaplan, J.J. Niederer, S.A. Huffmaster, M. Petrucci, N. Harel, C. McKinnon, Proc. Intl. Soc. Mag. Reson. Med. 26, 0425 (2018)

    Google Scholar 

  15. S.M. Smith, J. Andersson, E.J. Auerbach, C.F. Beckmann, J. Bijsterbosch, G. Douaud, E. Duff, D.A. Feinberg, L. Griffanti, Ludovica NeuroImage 80, 168 (2013)

    Google Scholar 

  16. U. Eichhoff, Appl. Magn. Reson. 49, 579–587 (2018)

    Article  Google Scholar 

  17. K.R. Sreenivasan, E. Bayram, V. Mishra, Z. Yang, C. Bird, X. Zhuang, D. Cordes, B. BluettProc, Intl. Soc. Mag. Reson. Med. 26, 0426 (2018)

    Google Scholar 

  18. K.S. Choi, P.R. Posse, P.E. Holtzheimer, C.C. McIntyre, X.P. Hu, H.S. Mayberg, Proc. Intl. Soc. Mag. Reson. Med. 21, 1183 (2013)

    Google Scholar 

  19. J.R. Younce, H.-Y. Lai, Y. Yu, I. Shih, Proc. Intl. Soc. Mag. Reson. Med. 21, 0751 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Eichhoff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eichhoff, U. Advanced MRI-Methods for Evaluation of Parkinson’s Disease. Appl Magn Reson 52, 1707–1719 (2021). https://doi.org/10.1007/s00723-021-01365-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01365-8

Navigation