Skip to main content
Log in

Effect of Degradation Processes Caused by a Small Perturbation on the Growth of the Average Cluster Size of Correlated Spins in Multiple Quantum NMR Spectroscopy of Solids

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Multiple quantum (MQ) NMR spectroscopy of solids allows one to observe the growth and decay of multispin correlations. As a rule, the average size of the cluster of correlated spins is extracted from the width of the MQ spectrum. In the present article, the size distribution of such clusters is explored. To obtain the above distribution, the solutions for the amplitudes of the decomposition over complete sets of orthogonal operators for the two different models were used. By means of these models, we have taken into account the dependence of cluster degradation (the degradation of a cluster means, e.g., destruction of correlations in cluster or loss of particles in it) through two positions. The first one defines by the cluster size while the second one depends on the MQ coherence order of the cluster. It is shown that in dependence of the relation the rates of these degradation processes, the width of the MQ spectrum carries different information. If the first process is faster that the second one, then the width of the MQ spectrum is still determined by the average cluster size. When the velocity ratio becomes inverse, the width of the MQ spectrum takes on a smaller value, which is a consequence of the faster degradation of the MQ spectrum components with large orders of coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Baum, M. Munovitz, A.N. Garroway, A. Pines, J. Chem. Phys. 83, 2015 (1985)

    Article  ADS  Google Scholar 

  2. R.E. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987)

    Google Scholar 

  3. M. Munovitz, A. Pines, Adv. Chem. Phys. 6, 1 (1987)

    Google Scholar 

  4. G.A. Alvarez, D. Suter, Phys. Rev. A 84, 012320 (2011)

    Article  ADS  Google Scholar 

  5. F.D. Domínguez, M.C. Rodríguez, R. Kaiser, D. Suter, and G.A. Álvarez, arXiv:2005.12361.

  6. C. Sánchez, A. Chattah, K. Wei, L. Buljubasich, P. Cappellaro, H. Pastawski, Phys. Rev. Lett. 124, 030601 (2020)

    Article  ADS  Google Scholar 

  7. S.I. Doronin, E.B. Fel’dman, I.D. Lazarev, Phys. Rev. A 100, 022330 (2019)

    Article  ADS  Google Scholar 

  8. K.X. Wei, C. Ramanathan, P. Cappellaro, Phys. Rev. Lett. 120, 070501 (2018)

    Article  ADS  Google Scholar 

  9. P. Hosur, X.-L. Qi, D.A. Robetrts, B. Yoshida, J. High Energy Phys., No. 2, 4 (2016)

    Article  ADS  Google Scholar 

  10. K.X. Wei, P. Peng, O. Shtanko, I. Marvian, S. Lloyd, C. Ramanathan, P. Cappellaro, Phys. Rev. Lett. 123, 090605 (2019)

    Article  ADS  Google Scholar 

  11. C. Gross and I. Bloch, Science 357, 995 (2017)

  12. R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  13. H.G. Krojanski, D. Suter, Phys. Rev. Lett. 93, 090501 (2004)

    Article  ADS  Google Scholar 

  14. H.G. Krojanski, D. Suter, Phys. Rev. A 74, 062319 (2006)

    Article  ADS  Google Scholar 

  15. G. Cho, P. Cappelaro, D.G. Cory, C. Ramanathan, Phys. Rev. B 74, 224434 (2006)

    Article  ADS  Google Scholar 

  16. G.A. Alvarez, D. Suter, Phys. Rev. Lett. 104, 230403 (2010)

    Article  ADS  Google Scholar 

  17. G.A. Alvarez, E.P. Danieli, P.R. Levstein, H.M. Pastavski, Phys. Rev. Lett. 101, 120503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. G.A. Alvarez, R. Kaiser, D. Suter, Ann. Phys. (Berlin) 525, 833 (2013)

    Article  ADS  Google Scholar 

  19. V.E. Zobov, A.A. Lundin, JETP 103, 904 (2006)

    Article  ADS  Google Scholar 

  20. V.E. Zobov, A.A. Lundin, Russ. J. Phys. Chem. B 2, 676 (2008)

    Article  Google Scholar 

  21. V.E. Zobov, A.A. Lundin, J. Exp. Theor. Phys. 113, 1006 (2011)

    Article  ADS  Google Scholar 

  22. A.A. Lundin, V.E. Zobov, Appl. Magn. Res. 47, 701 (2016)

    Article  Google Scholar 

  23. A.A. Lundin, V.E. Zobov, J. Exp. Theor. Phys. 120, 762 (2015)

    Article  ADS  Google Scholar 

  24. V.E. Zobov, A.A. Lundin, JETP 112(3), 451 (2011)

    Article  ADS  Google Scholar 

  25. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).

    Google Scholar 

  26. U. Haeberlen, M. Mehring, Principles of High Resolution NMR in Solids (Springer, Berlin, 1983).

    Google Scholar 

  27. F. Lado, J.D. Memory, G.W. Parker, Phys. Rev. B 4, 1406 (1971)

    Article  ADS  Google Scholar 

  28. M.H. Lee, Phys. Rev. Lett. 52, 1579 (1984)

    Article  ADS  Google Scholar 

  29. M.H. Lee, J. Hong, Phys. Rev. B 32, 7734 (1985)

    Article  ADS  Google Scholar 

  30. J.M. Liu, G. Müller, Phys. Rev. A 42, 5854 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  31. M.H. Lee, I.M. Kim, W.P. Cummings, R. Dekeyser, J. Phys.: Condens. Matter 7, 3187 (1995)

    ADS  Google Scholar 

  32. V.L. Bodneva, A.A. Lundin, A.A. Milyutin, Theor. Math. Phys. 106(3), 370 (1996)

    Article  Google Scholar 

  33. E.B. Fel’dman, Appl. Magn. Res. 45, 797 (2014)

    Article  Google Scholar 

Download references

Funding

The study is funded by the Ministry of Science and Higher Education of the Russian Federation in the framework of the State assignment, State registration number AAAA-A19-119012890064-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zobov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobov, V.E., Lundin, A.A. Effect of Degradation Processes Caused by a Small Perturbation on the Growth of the Average Cluster Size of Correlated Spins in Multiple Quantum NMR Spectroscopy of Solids. Appl Magn Reson 52, 879–892 (2021). https://doi.org/10.1007/s00723-021-01342-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01342-1

Navigation