Skip to main content
Log in

Dynamics and relaxation of multiple quantum NMR coherences in a quasi-one-dimensional chain of nuclear spins 19F in calcium fluorapatite

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Multiple quantum experiments on nuclear magnetic resonance on spins of 19F in calcium fluorapatite have been performed. It has been shown that more than 97% of the observed signal refers to the multiple quantum coherences of the zeroth and plus/minus second orders. The dependences of the intensities of these coherences on the time of the preparation period of the multiple quantum NMR experiment have been obtained. The dipole relaxation of multiple quantum coherences on the evolution period of the multiple quantum nuclear magnetic resonance experiment has been studied. A probe providing short radio-frequency pulses with the duration up to 0.3 μs has been developed for experiments. The experimental results show that the studied system can be used for the transmission of quantum information and the study of the decoherence process in strongly correlated multispin clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Baum, M. Munowitz, A. N. Garroway, and A. Pines, J. Chem. Phys. 83, 2015 (1985).

    Article  ADS  Google Scholar 

  2. J. Baum and A. Pines, J. Am. Chem. Soc. 108, 7447 (1986).

    Article  Google Scholar 

  3. J. Baum, K. K. Gleason, A. Pines, A. N. Garroway, and J. A. Reimer, Phys. Rev. Lett. 56, 1377 (1986).

    Article  ADS  Google Scholar 

  4. S. Lacelle, S.-J. Hwang, and B. C. Gerstein, J. Chem. Phys. 99, 8407 (1993).

    Article  ADS  Google Scholar 

  5. M. Tomaselli, S. Hediger, D. Suter, and R. R. Ernst, J. Chem. Phys. 105, 10672 (1996).

    Article  ADS  Google Scholar 

  6. H. C. Krojanski and D. Suter, Phys. Rev. Lett. 93, 090501 (2004).

    Article  ADS  Google Scholar 

  7. G. Cho, P. Cappellaro, D. G. Cory, and C. Ramanathan, Phys. Rev. B 74, 224434 (2006).

    Article  ADS  Google Scholar 

  8. D. C. Mattis, The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One-Dimension (World Scintific, Singapore, 1993).

    Book  MATH  Google Scholar 

  9. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon, Oxford, 1970).

    Google Scholar 

  10. U. Haberlen and J. S. Waugh, Phys. Rev. 185, 420 (1969).

    Article  ADS  Google Scholar 

  11. E. B. Fel’dman and S. Lacelle, Chem. Phys. Lett. 253, 27 (1996).

    Article  ADS  Google Scholar 

  12. E. B. Fel’dman and S. Lacelle, J. Chem. Phys. 107, 7067 (1997).

    Article  ADS  Google Scholar 

  13. S. I. Doronin, I. I. Maksimov, and E. B. Fel’dman, J. Exp. Theor. Phys. 91, 597 (2000).

    Article  ADS  Google Scholar 

  14. E. B. Fel’dman, Appl. Magn. Reson. 45, 797 (2014).

    Article  Google Scholar 

  15. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  16. G. Cho and J. P. Yesinowski, Chem. Phys. Lett. 205, 1 (1993).

    Article  ADS  Google Scholar 

  17. G. Cho and J. P. Yesinowski, J. Phys. Chem. 100, 15716 (1996).

    Article  Google Scholar 

  18. Supplemental materials for this article at www.jetpletters.ac.ru.

  19. P. Cappellaro, C. Ramanathan, and D. G. Cory, Phys. Rev. Lett. 99, 250506 (2007).

    Article  ADS  Google Scholar 

  20. G. A. Alvarez, M. Mishkovsky, E. P. Danieli, P. R. Levstein, H. M. Pastawski, and L. Frydman, Phys. Rev. A 81, 060302 (2010).

    Article  ADS  Google Scholar 

  21. C. Ramanathan, P. Cappellaro, L. Viola, and D. G. Cory, New J. Phys. 13, 103015 (2011).

    Article  ADS  Google Scholar 

  22. D. N. Shykind, J. Baum, S.-B. Liu, A. Pines, and A. N. Garroway, J. Magn. Reson. 76, 149 (1988).

    ADS  Google Scholar 

  23. W.-K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. B 3, 684 (1971).

    Article  ADS  Google Scholar 

  24. G. Kaur, A. Ajoy, and P. Cappellaro, New J. Phys. 15, 093035 (2013).

    Article  ADS  Google Scholar 

  25. S. I. Doronin, E. B. Fel’dman, and I. I. Maximov, J. Magn. Reson. 171, 37 (2004).

    Article  ADS  Google Scholar 

  26. G. A. Alvarez and D. Suter, Phys. Rev. Lett. 104, 230403 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Doronin.

Additional information

Original Russian Text © S.I. Doronin, S.G. Vasil’ev, A.A. Samoilenko, E.B. Fel’dman, B.A. Shumm, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 101, No. 9, pp. 687–692.

See the supplemental materials to this article at the website www.jetpletters.ac.ru.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doronin, S.I., Vasil’ev, S.G., Samoilenko, A.A. et al. Dynamics and relaxation of multiple quantum NMR coherences in a quasi-one-dimensional chain of nuclear spins 19F in calcium fluorapatite. Jetp Lett. 101, 613–617 (2015). https://doi.org/10.1134/S0021364015090076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015090076

Keywords

Navigation