Skip to main content
Log in

Free Induction Decay in Zigzag Spin Chains in a Multi-pulse NMR Experiment

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The free induction decay (FID) is investigated for zigzag (alternating) spin chains in the approximation of the nearest neighbor interactions. The dependence of the FID on the ratio of dipolar coupling constants (the parameter of dimerization) is also studied. Possible comparison of the obtained results with the experimental data for proton zigzag chains in a single crystal of hambergite is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)

    Article  ADS  Google Scholar 

  2. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1970)

    Google Scholar 

  3. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of NMR in One and Two Dimensions (Clarendon Press, Oxford, 1987)

    Google Scholar 

  4. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  5. P.W. Anderson, P.R. Weiss, Rev. Mod. Phys. 25, 269 (1953)

    Article  ADS  Google Scholar 

  6. P.W. Anderson, P.R. Weiss, J. Phys. Soc. Jpn. 9, 316 (1954)

    Article  ADS  Google Scholar 

  7. I.J. Lowe, R.E. Norberg, Phys. Rev. 107, 46 (1957)

    Article  ADS  Google Scholar 

  8. G.W. Parker, F. Lado, Phys. Rev. B 8, 3081 (1973)

    Article  ADS  Google Scholar 

  9. S.J.K. Jensen, O. Platz, Phys. Rev. B 7, 31 (1973)

    Article  ADS  Google Scholar 

  10. A.A. Lundin, JETP 83, 759 (1996)

    ADS  Google Scholar 

  11. B.V. Fine, Phys. Rev. Lett. 79, 4673 (1997)

    Article  ADS  Google Scholar 

  12. A.A. Lundin, V.E. Zobov, JETP 127, 305 (2018)

    Article  ADS  Google Scholar 

  13. G.A. Starkov, B. Fine, Phys. Rev. B 101, 024428 (2020)

    Article  ADS  Google Scholar 

  14. E.B. Fel’dman, A.K. Khitrin, Zh. Eks, Teor. Fiz. 98, 967 (1990)

  15. K. Tsiberkin, T. Belozerova, V. Henner, Eur. Phys. J. B 92, 140 (2019)

    Article  ADS  Google Scholar 

  16. K. Tsiberkin, J. Exp. Theor. Phys. 127, 1059 (2018)

    Article  ADS  Google Scholar 

  17. U. Haeberlen, J.S. Waugh, Phys. Rev. 175, 453 (1968)

    Article  ADS  Google Scholar 

  18. J. Baum, M. Munowitz, A.N. Garroway, A. Pines, J. Chem. Phys. 83(5), 2015 (1985)

    Article  ADS  Google Scholar 

  19. S.I. Doronin, I.I. Maksimov, E.B. Fel’dman, J. Exp. Theor. Phys. 91(3), 597 (2000)

  20. G.A. Bochkin, E.B. Fel’dman, S.G. Vasil’ev, Phys. Lett. A 383, 2993 (2019)

  21. G.A. Bochkin, E.B. Fel’dman, E.I. Kuznetsova, I.D. Lazarev, S.G. Vasil’ev, V.I. Volkov, J. Magn. Reson. 319, 106816 (2020)

  22. E.B. Fel’dman, M.G. Rudavets, JETP Lett. 81, 47 (2005)

  23. E.I. Kuznetsova, E.B. Fel’dman, JETP 102, 882 (2006)

  24. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon Press, Oxford, 1970)

    Google Scholar 

  25. H.B. Cruz, L.L. Goncalves, J. Phys. C Solid State Phys. 14, 2785 (1981)

    Article  ADS  Google Scholar 

  26. P. Jordan, E. Wigner, Z Phys. 47, 631 (1928)

    Article  ADS  Google Scholar 

  27. G. Cho, J.P. Yesinovski, J. Phys. Chem. 100(39), 15716–15725 (1996)

    Article  Google Scholar 

  28. G.A. Bochkin, E.B. Fel’dman, I.D. Lazarev, A.A. Samoilenko, S.G. Vasil’ev, J. Magn Reson. 301, 10–18 (2019)

  29. A. Abramovitz, I.A. Stegun, Handbook of Mathematical Functions (Hemisphere, New York, 1987)

    Google Scholar 

Download references

Funding

The work was performed as a part of a state task, State Registration No. AAAA-A19-119071190017-7. This work was partially supported by the Russian Foundation for Basic Research (project No. 20-03-00147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The long-time asymptotic behavior of the FID of Eq. (18)

We rewrite \(G(D_1t)\) of Eq. (18) as follows:

$$\begin{aligned} G(D_1t)\approx \frac{1}{\pi }\int \limits _{-\alpha }^{\pi -\alpha } \mathrm{d}x\,\cos [D_1t\sqrt{1+ 2\delta \cos (2x)+\delta ^2}],\quad \delta >1. \end{aligned}$$
(21)

The extremal points of the radical in (21) are:

$$\begin{aligned} x_1=0,\qquad x_2=\frac{\pi }{2}. \end{aligned}$$
(22)

Expanding the expression under the radical in Taylor series in the vicinity of \(x_1=0\), one can obtain:

$$\begin{aligned} \sqrt{\delta ^2+2\delta \cos (2x)+1}\approx \delta +1-\frac{2\delta x^2}{\delta +1}. \end{aligned}$$
(23)

Analogously, in the vicinity of \(x_2=\pi /2\) (\(x=\pi /2+y\)), one finds:

$$\begin{aligned} \sqrt{\delta ^2+2\delta \cos 2(\frac{\pi }{2}+y)+1}\approx \delta -1 +\frac{2\delta y^2}{\delta -1}. \end{aligned}$$
(24)

Since the main contributions to \(G(D_1t)\) are due to the vicinity of the extrema, one can write:

$$\begin{aligned} G(D_1 t)\approx & {} \frac{1}{\pi }\int \limits _{-\epsilon }^\epsilon \mathrm{d}x\, \cos \left\{ D_1t\left( \delta +1-\frac{2\delta x^2}{\delta +1}\right) \right\} \nonumber \\&\quad +\frac{1}{\pi }\int \limits _{\frac{\pi }{2}-\epsilon }^{\frac{\pi }{2}+\epsilon } \mathrm{d}y\, \cos \left\{ D_1 t \left[ \delta - 1 +\frac{2\delta y^2}{\delta +1}\right] \right\} \nonumber \\= & {} \frac{1}{\pi }\int \limits _{-\epsilon }^\epsilon \mathrm{d}x\, \left\{ \cos \left[ D_1 t\left( \delta +1-\frac{2\delta x^2}{\delta +1}\right) \right] \right. \nonumber \\&\quad +\cos \left. \left[ D_1 t\left( \delta -1 +\frac{2\delta y^2}{\delta +1}\right) \right] \right\} \nonumber \\= & {} \frac{1}{\pi }\sqrt{\frac{\delta +1}{2\delta D_1t}}\int \limits _{-\epsilon }^\epsilon \mathrm{d}z\, \cos \left[ (\delta +1) D_1 t -z^2\right] \nonumber \\&\quad +\frac{1}{\pi }\sqrt{\frac{\delta -1}{2\delta D_1 t}}\int \limits _{-\epsilon }^\epsilon \mathrm{d}z\, \cos \left[ (\delta -1)D_1 t +z^2\right] . \end{aligned}$$
(25)

Since the main contribution to the integrals of Eq. (25) comes from the vicinity of \(z=0\), it is legitimate to set the integration limits to infinity. Using the value of the Fresnel integrals [29]:

$$\begin{aligned} \int \limits _{-\infty }^\infty \cos (z^2)\, \mathrm{d}z=\int \limits _{-\infty }^\infty \sin (z^2) \mathrm{d}z=\sqrt{\frac{\pi }{2}}, \end{aligned}$$
(26)

one can obtain from Eq. (25):

$$\begin{aligned}&G(D_1 t) =\nonumber \\&\quad \frac{1}{2\sqrt{\pi \delta D_1 t}}\left\{ \sqrt{\delta +1} \cos \left[ (\delta +1) D_1 t\right] +\sqrt{\delta -1} \cos \left[ (\delta -1) D_1 t\right] \right\} \nonumber \\&\quad +\frac{1}{2\sqrt{\pi \delta D_1 t}} \left\{ \sqrt{\delta +1} \sin \left[ (\delta +1)D_1t\right] -\sqrt{\delta -1}\sin \left[ (\delta -1) D_1 t\right] \right\} . \end{aligned}$$
(27)

Equation (27) can be rewritten as follows:

$$\begin{aligned} G(D_1t)=\nonumber \\ \frac{\sqrt{\delta +1}}{2\sqrt{\pi \delta D_1 t}}\left\{ \cos \left[ (\delta +1)D_1 t\right] + \cos \left[ \frac{\pi }{2} -(\delta +1)D_1 t\right] \right\} \nonumber \\ +\frac{\sqrt{\delta -1}}{2\sqrt{\pi \delta D_1 t}}\left\{ \cos \left[ (\delta -1)D_1 t\right] -\cos \left[ \frac{\pi }{2} - (\delta -1) D_1 t\right] \right\} . \end{aligned}$$
(28)

After simple trigonometric transformations in Eq. (28), one obtains finally:

$$\begin{aligned} \begin{aligned} G(D_1t)\approx (2\pi \delta D_1 t)^{-1/2} \left\{ \sqrt{\delta +1} \cos \left[ (\delta +1)D_1 t-\frac{\pi }{ 4 }\right] +\right. \\ \left. \sqrt{\delta -1}\cos \left[ (\delta -1)D_1t+\frac{\pi }{4}\right] \right\} . \end{aligned} \end{aligned}$$
(29)

Formula (29) coincides with Eq. (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, S.G., Fedorova, A.V. & Fel’dman, E.B. Free Induction Decay in Zigzag Spin Chains in a Multi-pulse NMR Experiment. Appl Magn Reson 52, 831–842 (2021). https://doi.org/10.1007/s00723-021-01325-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01325-2

Navigation