Skip to main content
Log in

Development of an ESR/NMR Double-Magnetic-Resonance System for Use at Ultra-low Temperatures and in High Magnetic Fields and Its Use for Measurements of a Si Wafer Lightly Doped with 31P

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Dynamic nuclear polarization–nuclear magnetic resonance (DNP–NMR) and electron–nuclear double resonance (ENDOR) provide useful information about the magnetic properties of dilute spin systems. One such system is a Si wafer lightly doped with 31P (Si:P) which is a candidate for quantum-computing devices. The “Si:P” model was proposed by Kane in 1998. To date, however, the details of the nuclear magnetism of 31P, which is important information for the use of these nuclei as quantum bits for computing, are still unknown. The reason is because the spins are diluted, and there has been no report about 31P in Si from direct NMR detection. It is thus necessary to overcome the dilution to show the usefulness of Si:P. The DNP–NMR method provides a way to improve the NMR sensitivity to 31P by controlling the relative magnetization with the Overhauser effect. We have developed magnetic-resonance equipment for ultra-low temperatures and high magnetic fields with the goal of using DNP to detect 31P directly in NMR measurements. We have carried out 31P-DNP–NMR at 139.03 MHz, 220 mK using this system. We have successfully detected by one-shot measurement the spin-echo NMR signal of approximately 1.9 × 1014 fully polarized 31P nuclear spins which is estimated from the size and the concentration of the sample. In this report, we describe a new electron spin resonance (ESR)/NMR double-magnetic-resonance system constructed in a 3He–4He dilution refrigerator, and demonstrate its use to obtain ENDOR and DNP–NMR measurements of 31P in a Si wafer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.P. Slichter, Principles of Magnetic Resonance with Example from Solid State Physics (Harper&Row Publications Inc., NewYork, 1963).

    Google Scholar 

  2. C.P. Poole Jr., Electron Spin Resonance, 2nd edn. (Dover Publications Inc., New York, 1983).

    Google Scholar 

  3. A.W. Overhauser, Phys. Rev. 92, 411 (1953)

    Article  ADS  Google Scholar 

  4. T.R. Carver, C.P. Slichter, Phys. Rev. 102, 4 (1956)

    Article  Google Scholar 

  5. T. Maly, G.T. Debelouchina, V.S. Bajaj, K.-N. Hu, C.-G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)

    Article  ADS  Google Scholar 

  6. Y. Matsuki, K. Ueda, T. Idehara, R. Ikeda, K. Kosuga, I. Ogawa, S. Nakamura, M. Toda, T. Anai, T. Fujiwara, J. Infrared. Milli. Terahz Waves. 33, 745 (2012)

    Article  Google Scholar 

  7. J.H. Ardenkæ-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thanning, K. Golman, PNAS 100, 18 (2003)

    Google Scholar 

  8. K.R. Thurber, W. Yau, R. Tycko. J. Magn. Reson. 204, 303 (2010)

    Article  ADS  Google Scholar 

  9. J. Leggett, R. Hunter, J. Granwehr, R. Panek, A.J. Perez-Linde, A.J. Horsewill, J. McMaster, G. Smith, W. Köckenberger, Phys. Chem. Chem. Phys. 12, 5883 (2010)

    Article  Google Scholar 

  10. L. Lumata, M. Merritt, C. Khemtong, S.J. Ratnakar, J. Van Tol, L. Yu, L. Song, Z. Kovacs : RSC Adv. 2, 12812 (2012)

    Google Scholar 

  11. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  12. C.A. McDowell, A. Naito, D.L. Sastry, Y.U. Cui, K. Sha, S.X. Yu, J. Mole. Struct. 195, 361 (1989)

    Article  ADS  Google Scholar 

  13. B. Epel, A. Pöppl, P. Manikandan, S. Vega, D. Goldfarb. J. Magn. Reson. 148(2), 388 (2001)

    Article  ADS  Google Scholar 

  14. G.W. Morley, L.C. Brunel, J. Van Tol, Rev. Sci. Instrum. 79(6), 064703 (2008)

    Article  ADS  Google Scholar 

  15. L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, R.G. Griffin, Phys. Rev. Lett. 71, 21 (1993)

    Article  Google Scholar 

  16. V. Vizthum, M.A. Caporini, G. Bodenhausen. J. Magn. Reson. 205, 177 (2010)

    Article  ADS  Google Scholar 

  17. J. Järvinen, J. Ahokas, S. Sheludyakov, O. Vainio, L. Lehtonen, S. Vasiliev, D. Zvezdov, Y. Fujii, S. Mitsudo, T. Mizusaki, M. Gwak, S.G. Lee, S. Lee, L. Vlasenko. Phys. Rev. B. 90, 214401 (2014)

    Article  ADS  Google Scholar 

  18. J. Järvinen, D. Zvezdov, J. Ahokas, S. Sheludyakov, O. Vainio, L. Lehtonen, S. Vasiliev, Y. Fujii, S. Mitsudo, T. Mizusaki, M. Gwak, S.G. Lee, S. Lee, L. Vlasenko. Phys. Rev. B. 92, 121202 (2015)

    Article  ADS  Google Scholar 

  19. Y. Fujii, S. Mitsudo, K. Morimoto, T. Mizusaki, M. Gwak, S.G. Lee, A. Fukuda, A. Matsubara, T. Ueno, S. Lee, J. Phys. Conf. Ser. 568, 042005 (2014)

    Article  Google Scholar 

  20. Y. Ishikawa, K. Ohya, Y. Fujii, Y. Koizumi, S. Miura, S. Mitsudo, A. Fukuda, T. Asano, T. Mizusaki, A. Matsubara, H. Kikuchi, H. Yamamori, J. Infrared. Milli. Terahz Waves 39(4), 288 (2018)

    Article  Google Scholar 

  21. G. Feher, E.A. Gere, Phys. Rev. 114, 5 (1958)

    Google Scholar 

  22. B.E. Kane, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  23. T.D. Ladd, J.R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. Lett. 89, 1 (2002)

    Article  Google Scholar 

  24. C.D. Hill, L.C.L. Hollenberg, A.G. Fowler, C.J. Wellard, A.D. Greentree, H.S. Goan, Phys. Rev. B 72, 045350 (2005)

    Article  ADS  Google Scholar 

  25. A.R. Stegner, H. Tezuka, T. Andlauer, M. Stutzmann, M.L.W. Thewalt, M.S. Brandt, K.M. Itoh, Phys. Rev. B 72, 045350 (2005)

    Article  Google Scholar 

  26. Y. He, S.K. Gorman, D. Keith, L. Kranz, J.G. Keizer, M. Y. Simmons. Nature 571, 371 (2019)

    Article  ADS  Google Scholar 

  27. A.M. Tyryshkin, S. Tojo, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M.L.W. Thewalt, K.M. Itoh, S.A. Lyon, Nat. Mater. 11, 143 (2012)

    Article  ADS  Google Scholar 

  28. L. Gyongyosi, S. Imre, Comput. Sci. Rev. 31, 51 (2019)

    Article  MathSciNet  Google Scholar 

  29. D.R. McCamey, J. Van Tol, G.W. Morley, C. Boehme. Science 330, 1652 (2010)

    Article  ADS  Google Scholar 

  30. D. R. McCamey, C. Boehme, G. W. Morley, J. Van Tol : Phys. Rev. B 85, (2012).

  31. S. Sheludiakov, J. Ahokas, O. Vainio, J. Järvinen, D. Zvezdov, S. Vasiliev, V.V. Khmelenko, S. Mao, D.M. Lee, Rev. Sci. Instrum. 85, 053902 (2014)

    Article  ADS  Google Scholar 

  32. Y. Ishikawa, K. Ohya, S. Miura, Y. Fujii, S. Mitsudo, T. Mizusaki, A. Fukuda, A. Matsubara, H. Kikuchi, T. Asano, H. Yamamori, S. Lee, S. Vasiliev, J. Phys. Conf. Ser. 969(6), 012111 (2018)

    Article  Google Scholar 

  33. Y. Ishikawa, K. Ohya, Y. Fujii, A. Fukuda, S. Miura, S. Mitsudo, H. Yamamori, H. Kikuchi, J. Infrar. Milli. Terahrtz Waves. 39, 387 (2018)

    Article  Google Scholar 

  34. Y. Fujii, Y. Ishikawa, K. Ohya, S. Miura, Y. Koizumi, A. Fukuda, T. Omija, S. Mitsudo, T. Mizusaki, A. Matsubara, H. Yamamori, T. Komori, K. Morimoto, H. Kikuchi. Appl. Magn. Reson. 49(8), 783 (2018)

    Article  Google Scholar 

  35. H. Kogelnik, T. Li, IEEE 54, 10 (1966)

    Article  Google Scholar 

  36. M.L. Buess, A.N. Garroway, J.B. Miller, J. Magn. Reson. 92, 348 (1991)

    ADS  Google Scholar 

Download references

Acknowledgements

In carrying out this research, we would like to thank Dr. Takao Mizusaki, everyone at the Advanced Development Center, and Naoki Aoyama from the technical division in University of Fukui. Part of this research was supported by JSPS (Grant Nos. 26400331, 16KK0098, 17K05514, 18H05847, and 19K21036). And GIMRT, the program of the Institute for Materials Research, Tohoku University (Proposal No. 19K0703). Also Research Center for Far-Infrared Research and Development supported us as H30FIRDM010C and R01FIRDM001D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuya Ishikawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, Y., Fujii, Y., Fukuda, A. et al. Development of an ESR/NMR Double-Magnetic-Resonance System for Use at Ultra-low Temperatures and in High Magnetic Fields and Its Use for Measurements of a Si Wafer Lightly Doped with 31P. Appl Magn Reson 52, 305–315 (2021). https://doi.org/10.1007/s00723-021-01309-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01309-2

Navigation