Skip to main content
Log in

THz ESR Study of Peculiar Co Pyrochlore System GeCo2O4 Using Pulsed High Magnetic Field

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

THz electron spin resonance (ESR) measurements of the spinel compound GeCo2O4, which consists of the Co2+ pyrochlore structure, were performed. The temperature dependence measurements revealed new antiferromagnetic phases, AF1 and AF2, below TN. Moreover, a wide magnetic field range of ESR study using a single crystal at 1.8 K also revealed various field-induced phases due to the competition between the spin–lattice coupling and the spin frustration. Critical field resonances were observed at 5.0 T, 8.6 T, and 11.0 T for B//[111] and 5.1 T, 7.7 T, 11.2 T, and 13.0 T for B//[110] at 1.8 K. Although it became difficult to observe ESR above 86 K, the g-values of Co2+ ions were estimated to be g[111] = 3.34 and g[110] = 3.27 for [111] and [110], respectively, from the observed ESR mode above the saturation field at 1.8 K. Detailed frequency-field diagrams of the ESR modes at 1.8 K suggested the existence of spin–lattice coupling energy of 250 GHz (= 1.03 meV = 12 K) at the critical field resonances. The spin gap mode in the frequency-field diagram at 1.8 K showed excitation energies of E[111] = 1004 GHz (= 4.15 meV = 48 K) and E[110] = 1044 GHz (= 4.32 meV = 50 K) for [111] and [110], respectively. These results will be discussed in connection with the di-tetramer model suggested previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The critical field resonance has been pointed out theoretically by Nagamiya and Nagamiya [41] and has been observed experimentally by M. Data group [42]. The detailed angular dependence measurements of the critical field resonance for antiferromagnet CuCl2·2H2O has been reported by K. Nagata. The absorption intensity of the critical field resonance decreases abruptly, when the applied magnetic field parallels absolutely the easy axis within 0.1° [43].

References

  1. A. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994)

    Article  ADS  Google Scholar 

  2. T. Suzuki, M. Matsumura, K. Taniguchi, T. Arima, T. Katsufuji, Phys. Rev. Lett. 98, 127203 (2007)

    Article  ADS  Google Scholar 

  3. D. Khomskii, M. Mostovoy, J. Phys. A 36, 9197 (2003)

    Article  ADS  Google Scholar 

  4. R. Fichtl, V. Tsurkan, P. Lunkenheimer, J. Hemberger, V. Fritsch, H.-A. Krung von Nidda, E.-W. Scheidt, A. Loidl, Phys. Rev. Lett. 94, 027601 (2005)

    Article  ADS  Google Scholar 

  5. K. Penc, N. Shannon, H. Shiba, Phys. Rev. Lett. 93, 197203 (2004)

    Article  ADS  Google Scholar 

  6. A. Miyata, H. Ueda, Y. Ueda, H. Sawabe, S. Takeyama, Phys. Rev. Lett. 107, 207203 (2011)

    Article  ADS  Google Scholar 

  7. M. Yoshida, T. Hirano, Y. Inagaki, S. Okubo, H. Ohta, H. Kikuchi, I. Kagomiya, M. Toki, K. Kohn, J. Phys. Soc. Jpn. 75, 044709 (2006)

    Article  ADS  Google Scholar 

  8. S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff, S.-W. Cheong, Phys. Rev. Lett. 84, 3718 (2000)

    Article  ADS  Google Scholar 

  9. H. Ueda, H. Mitamura, T. Goto, H. Takagi, Phys. Rev. Lett. 94, 047202 (2005)

    Article  ADS  Google Scholar 

  10. H. Ueda, H. Mitamura, T. Goto, Y. Ueda, Phys. Rev. B 73, 094415 (2006)

    Article  ADS  Google Scholar 

  11. A. Miyata, H. Ueda, S. Takeyama, J. Phys. Soc. Jpn. 83, 063702 (2014)

    Article  ADS  Google Scholar 

  12. K. Yamada, M. Matsuda, Y. Endoh, B. Keimer, R. J. Birgeneau, S. Onodera, J. Mizusaki, T. Matsuura, G. Shirane, Phys. Rev. B 39, 2336 (1989)

    Article  ADS  Google Scholar 

  13. F. C. Romejin, Philips Res. Rep. 8, 304 (1953)

    Google Scholar 

  14. S. Diaz, S. de Brio, M. Holzapfel, G. Chouteau, P. Strobel, Physica B 346–347, 146 (2004)

    Article  ADS  Google Scholar 

  15. T. Watanabe, S. Hara, S. Ikeda, Phys. Rev. B 78, 094420 (2008)

    Article  ADS  Google Scholar 

  16. R. Stevens, B. F. Woodfield, J. Boerio-Goates, M. K. Crawford, J. Chem. Thermodyn. 36, 359 (2004)

    Article  Google Scholar 

  17. J. Hubsch, G. Gavoille, J. Magn. Magn. Mater. 66, 17 (1987)

    Article  ADS  Google Scholar 

  18. J. C. Lashley, R. Stevens, M. K. Crawford, J. Boerio-Goates, B. F. Woodfield, J. W. Lynn, P. A. Goddard, R. A. Fisher, Phys. Rev. B 78, 104406 (2008)

    Article  ADS  Google Scholar 

  19. S. Diaz, S. de Brion, G. Chouteau, B. Canais, V. Simonet, P. Strobel, Phys. Rev. B 74, 092404 (2006)

    Article  ADS  Google Scholar 

  20. T. Hoshi, H. Aruga Katori, M. Kosaka, H. Takagi, J. Magn. Magn. Mater. 310, e448 (2007)

    Article  ADS  Google Scholar 

  21. X. Fabrèges, E. Ressouche, F. Duc, S. de Brion, M. Amara, C. Detlefs, L. Paolasini, E. Suard, L.-P. Regnault, B. Canals, P. Strobel, V. Simonet, Phys. Rev. B 95, 014428 (2017)

    Article  ADS  Google Scholar 

  22. M. Matsuda, T. Hoshi, H. A. Katori, M. Kosaka, H. Takagi, J. Phys. Soc. Jpn. 80, 034708 (2011)

    Article  ADS  Google Scholar 

  23. T. Watanabe, S. Hara, S. Ikeda, K. Tomiyasu, Phys. Rev. B 84, 020409(R) (2011)

    Article  ADS  Google Scholar 

  24. P. Pramanik, S. Ghosh, P. Yanda, D. C. Joshi, S. Pittala, A. Sundaresan, P. K. Mishra, S. Thota, M. S. Seehra, Phys. Rev. B 99, 134422 (2019)

    Article  ADS  Google Scholar 

  25. T. Yamasaki, S. Okubo, H. Ohta, T. Sakurai, S. Ikeda, H. Oshima, M. Takahashi, S. Hara, K. Tomiyasu, T. Watanabe, J. Phys. Conf. Ser. 400, 032119 (2012)

    Article  Google Scholar 

  26. P. T. Barton, M. C. Kemei, M. W. Gaultois, S. L. Moffitt, L. E. Darago, R. Seshadri, M. R. Suchomel, B. C. Melot, Phys. Rev. B 90, 064105 (2014)

    Article  ADS  Google Scholar 

  27. K. Tomiyasu, M. K. Crawford, D. T. Adroja, P. Manuel, A. Tominaga, S. Hara, H. Sato, T. Watanabe, S.I. Ikeda, J. W. Lynn, K. Iwasa, K. Yamada, Phys. Rev. B 84, 054405 (2011)

    Article  ADS  Google Scholar 

  28. S. Hara, Y. Yoshida, S. Ikeda, N. Shirakawa, M. K. Crawford, K. Takase, Y. Takano, K. Sekizawa, J. Cryst. Growth 283, 185 (2005)

    Article  ADS  Google Scholar 

  29. N. Nakagawa, T. Yamada, K. Akioka, S. Okubo, S. Kimura, H. Ohta, Int. J. Infrared Millim. Waves 19, 167 (1998)

    Article  Google Scholar 

  30. M. Motokawa, H. Ohta, N. Maki, Int. J. Infrared Millim. Waves 12, 149 (1991)

    Article  ADS  Google Scholar 

  31. S. Kimura, H. Ohta, M. Motokawa, S. Mitsudo, W.-J. Jang, M. Hasegawa, H. Takei, Int. J. Infrared Millim. Waves 17, 833 (1996)

    Article  ADS  Google Scholar 

  32. H. Ohta, M. Tomoo, S. Okubo, T. Sakurai, M. Fujisawa, T. Tomita, M. Kimata, T. Yamamoto, M. Kawauchi, K. Kindo, J. Phys, Conf. Ser. 61, 611 (2006)

    Article  ADS  Google Scholar 

  33. S. Okubo, H. Ohta, Y. Inagaki, T. Sakurai, Phys. B 346–347, 627 (2004)

    Article  ADS  Google Scholar 

  34. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  Google Scholar 

  35. A. Abragam, M. H. L. Pryce, Proc. R. Soc. London Ser. A. 206, 173 (1951)

    Article  ADS  Google Scholar 

  36. M. E. Lines, Phys. Rev. 131, 546 (1963)

    Article  ADS  Google Scholar 

  37. H. Shiba, Y. Ueda, K. Okunichi, S. Kimura, K. Kindo, J. Phys. Soc. Jpn. 72, 2326 (2003)

    Article  ADS  Google Scholar 

  38. K. Nagata, Y. Tazuke, J. Phys. Soc. Jpn. 32, 337 (1972)

    Article  ADS  Google Scholar 

  39. Y. Tsunoda, H. Suzuki, S. Katano, K. Siratori, E. Kita, K. Kohn, J. Phys. Soc. Jpn. 75, 064710 (2006)

    Article  ADS  Google Scholar 

  40. H. Ohta, S. Okubo, S. Ono, H. Kikuchi, Phys. Stat. Sol. C 8, 2816 (2006)

    Google Scholar 

  41. Nagamiya, T. Nagamiya, Prog. Theor. Phys. 11, 309 (1954)

    Article  ADS  Google Scholar 

  42. M. Date, K. Nagata, J. Appl. Phys. 34, 1038 (1963)

    Article  ADS  Google Scholar 

  43. K. Nagata, H. Yamazaki, M. Date, in Proceedings of 18th Annual Meeting of the Physical Society of Japan (Tokyo, Japan, 4–9 Apr 1963) Part 4, p. 435, 7p-F-6

  44. H. Aruga Katori, Novel States of Matter Induced by Frustration, In Meeting on Osaka Univ. at Jan., 2012

  45. H. Nojiri, H. Ohta, S. Okubo, O. Fujita, J. Akimitsu, M. Motokawa, J. Phys. Soc. Jpn. 68, 3417 (1999)

    Article  ADS  Google Scholar 

  46. S. Kimura, M. Hagiwara, T. Takeuchi, H. Yamaguchi, H. Ueda, Y. Ueda, K. Kindo, Phys. Rev. B 83, 214401 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SO and HO are very grateful for their fruitful discussions with Prof. T. Sakai (University of Hyogo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Okubo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okubo, S., Ohta, H., Ijima, T. et al. THz ESR Study of Peculiar Co Pyrochlore System GeCo2O4 Using Pulsed High Magnetic Field. Appl Magn Reson 52, 411–424 (2021). https://doi.org/10.1007/s00723-020-01295-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01295-x

Navigation