Skip to main content
Log in

ESR Theories for Hidden Magnetic Modes in Exotic Quantum Spin Systems

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Quantum spin systems are representative of strongly interacting quantum many-body systems. ESR theories for these systems require careful treatment of microscopic interactions between electron spins. In this article, we review several ESR theories in low-dimensional quantum spin systems by giving our particular attention to the detection of hidden magnetic modes that are found or would be found thanks to some advantages of the ESR spectroscopy. We discuss an ESR caused by an interplay of a nonmagnetic impurity and magnetic excitations (Sect. 2), gapped modes with nonlinear field dependence in spin ladders (Sect. 3), and a quadrupolar mode that characterizes a hidden magnetic order called a spin-nematic order (Sect. 4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Rigorously saying, the breather is formed when the two-“particle” S matrix has a simple pole. The pole corresponds to a certain condition on momenta and energies of “particles” involved in the scattering.

  2. The wave vector is a scalar quantity as long as we are focused on magnetic excitations inside the spin chain.

  3. Qualitative effects of inter-chain and inter-ladder interactions were discussed, for example, in Ref. [71].

  4. An \(\mathrm {SU(3)}\) version of the conventional spin-wave theory.

References

  1. L. Balents, Nature 464(7286), 199 (2010)

    Article  ADS  Google Scholar 

  2. A. Kitaev, Ann. Phys. 321(1), 2 (2006). https://doi.org/10.1016/j.aop.2005.10.005

    Article  ADS  Google Scholar 

  3. F. Pollmann, A.M. Turner, E. Berg, M. Oshikawa, Phys. Rev. B 81, 064439 (2010). https://doi.org/10.1103/PhysRevB.81.064439

    Article  ADS  Google Scholar 

  4. F. Pollmann, E. Berg, A.M. Turner, M. Oshikawa, Phys. Rev. B 85, 075125 (2012)

    Article  ADS  Google Scholar 

  5. M. Blume, Y.Y. Hsieh, J. Appl. Phys. 40(3), 1249 (1969). https://doi.org/10.1063/1.1657616

    Article  ADS  Google Scholar 

  6. H.H. Chen, P.M. Levy, Phys. Rev. Lett. 27, 1383 (1971). https://doi.org/10.1103/PhysRevLett.27.1383

    Article  ADS  Google Scholar 

  7. P. Chandra, P. Coleman, Phys. Rev. Lett. 66, 100 (1991). https://doi.org/10.1103/PhysRevLett.66.100

    Article  ADS  Google Scholar 

  8. N. Shannon, T. Momoi, P. Sindzingre, Phys. Rev. Lett. 96, 027213 (2006). https://doi.org/10.1103/PhysRevLett.96.027213

    Article  ADS  Google Scholar 

  9. H. Tsunetsugu, M. Arikawa, J. Phys. Soc. Jpn. 75(8), 083701 (2006). https://doi.org/10.1143/JPSJ.75.083701

    Article  ADS  Google Scholar 

  10. A.M. Tsvelik, Quantum Field Theory in Condensed Matter Physics (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  11. A. Altland, B.D. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  12. E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  13. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  14. M. Hagiwara, K. Katsumata, I. Affleck, B.I. Halperin, J.P. Renard, Phys. Rev. Lett. 65, 3181 (1990). https://doi.org/10.1103/PhysRevLett.65.3181

    Article  ADS  Google Scholar 

  15. M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, Y. Ajiro, Phys. Rev. Lett. 95, 117202 (2005). http://www.sciencedirect.com/science/article/pii/S00034916050023810

    Article  ADS  Google Scholar 

  16. S.C. Furuya, M. Oshikawa, Phys. Rev. Lett. 109, 247603 (2012). http://www.sciencedirect.com/science/article/pii/S00034916050023811

    Article  ADS  Google Scholar 

  17. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940). http://www.sciencedirect.com/science/article/pii/S00034916050023812

    Article  ADS  Google Scholar 

  18. P.W. Anderson, Phys. Rev. 86, 694 (1952). http://www.sciencedirect.com/science/article/pii/S00034916050023813

    Article  ADS  Google Scholar 

  19. R. Kubo, Phys. Rev. 87, 568 (1952). http://www.sciencedirect.com/science/article/pii/S00034916050023814

    Article  ADS  Google Scholar 

  20. M. Takahashi, Phys. Rev. B 40, 2494 (1989). http://www.sciencedirect.com/science/article/pii/S00034916050023815

    Article  ADS  Google Scholar 

  21. S. Tomonaga, Prog. Theoret. Phys. 5(4), 544 (1950). https://doi.org/10.1143/ptp/5.4.544

    Article  ADS  Google Scholar 

  22. J.M. Luttinger, J. Math. Phys. 4(9), 1154 (1963). https://doi.org/10.1063/1.1704046

    Article  ADS  Google Scholar 

  23. P. Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory (Springer Science and Business Media, Berlin, 2012)

    MATH  Google Scholar 

  24. M. Oshikawa, I. Affleck, Phys. Rev. Lett. 82, 5136 (1999). http://www.sciencedirect.com/science/article/pii/S00034916050023818

    Article  ADS  Google Scholar 

  25. M. Oshikawa, I. Affleck, Phys. Rev. B 65, 134410 (2002). http://www.sciencedirect.com/science/article/pii/S00034916050023819

    Article  ADS  Google Scholar 

  26. K. Okuda, H. Hata, M. Date, J. Phys. Soc. Jpn. 33(6), 1574 (1972). https://doi.org/10.1143/JPSJ.33.1574

    Article  ADS  Google Scholar 

  27. T.G. Castner, M.S. Seehra, Phys. Rev. B 4, 38 (1971). https://doi.org/10.1103/PhysRevB.81.0644391

    Article  ADS  Google Scholar 

  28. P.M. Richards, M.B. Salamon, Phys. Rev. B 9, 32 (1974). https://doi.org/10.1103/PhysRevB.81.0644392

    Article  ADS  Google Scholar 

  29. F.H. Essler, R.M. Konik, in From Fields to Strings: Circumnavigating Theoretical Physics. Ian Kogan Memorial Collection (in 3 Volumes) Vol. 1, ed. by M. Shifman, J. Wheater, A. Vainshtein (World Scientific, Singapore, 2005), pp. 684–830

    Chapter  Google Scholar 

  30. K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 44(3), 757 (1978). https://doi.org/10.1143/JPSJ.44.757

    Article  ADS  Google Scholar 

  31. I. Affleck, M. Oshikawa, Phys. Rev. B 60, 1038 (1999). https://doi.org/10.1103/PhysRevB.81.0644395

    Article  ADS  Google Scholar 

  32. S.A. Zvyagin, A.K. Kolezhuk, J. Krzystek, R. Feyerherm, Phys. Rev. Lett. 93, 027201 (2004). https://doi.org/10.1103/PhysRevB.81.0644396

    Article  ADS  Google Scholar 

  33. S.A. Zvyagin, A.K. Kolezhuk, J. Krzystek, R. Feyerherm, Phys. Rev. Lett. 95, 017207 (2005). https://doi.org/10.1103/PhysRevB.81.0644397

    Article  ADS  Google Scholar 

  34. A.C. Tiegel, A. Honecker, T. Pruschke, A. Ponomaryov, S.A. Zvyagin, R. Feyerherm, S.R. Manmana, Phys. Rev. B 93, 104411 (2016). https://doi.org/10.1103/PhysRevB.81.0644398

    Article  ADS  Google Scholar 

  35. I. Umegaki, H. Tanaka, T. Ono, H. Uekusa, H. Nojiri, Phys. Rev. B 79, 184401 (2009)

    Article  ADS  Google Scholar 

  36. I. Umegaki, H. Tanaka, T. Ono, M. Oshikawa, K. Sakai, Phys. Rev. B 85, 144423 (2012). https://doi.org/10.1103/PhysRevB.85.0751250

    Article  ADS  Google Scholar 

  37. K. Nawa, T. Yajima, Y. Okamoto, Z. Hiroi, Inorgan. Chem. 54(11), 5566 (2015). https://doi.org/10.1021/acs.inorgchem.5b00686. PMID: 25988987

    Article  Google Scholar 

  38. K. Nawa, O. Janson, Z. Hiroi, Phys. Rev. B 96, 104429 (2017). https://doi.org/10.1103/PhysRevB.85.0751252

    Article  ADS  Google Scholar 

  39. F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, vol. 14 (World Scientific, Singapore, 1992)

    Book  Google Scholar 

  40. S. Eggert, I. Affleck, Phys. Rev. B 46, 10866 (1992). https://doi.org/10.1103/PhysRevB.85.0751253

    Article  ADS  Google Scholar 

  41. C.L. Kane, M.P.A. Fisher, Phys. Rev. Lett. 68, 1220 (1992a). https://doi.org/10.1103/PhysRevB.85.0751254

    Article  ADS  Google Scholar 

  42. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 46, 15233 (1992). https://doi.org/10.1103/PhysRevB.85.0751255

    Article  ADS  Google Scholar 

  43. S. Ghoshal, A. Zamolodchikov, Int. J. Mod. Phys. A 9, 3841 (1994). https://doi.org/10.1103/PhysRevB.85.0751256

    Article  ADS  Google Scholar 

  44. S. Ghoshal, Int. J. Mod. Phys. A 9, 4801 (1994). https://doi.org/10.1103/PhysRevB.85.0751257

    Article  ADS  Google Scholar 

  45. Z. Bajnok, L. Palla, G. Takács, Nucl. Phys. B 614(3), 405 (2001). https://doi.org/10.1103/PhysRevB.85.0751258

    Article  ADS  Google Scholar 

  46. A.B. Zamolodchikov, Int. J. Mod. Phys. A 10(08), 1125 (1995). https://doi.org/10.1142/S0217751X9500053X

    Article  ADS  Google Scholar 

  47. F.H.L. Ebler, Phys. Rev. B 59, 14376 (1999). https://doi.org/10.1063/1.16576160

    Article  ADS  Google Scholar 

  48. T. Sakai, H. Shiba, J. Phys. Soc. Jpn. 63(3), 867 (1994). https://doi.org/10.1143/JPSJ.63.867

    Article  ADS  Google Scholar 

  49. T. Sakai, J. Phys. Soc. Jpn. 72, 53 (2003). https://doi.org/10.1143/JPSJS.72SB.53

    Article  ADS  Google Scholar 

  50. I. Umegaki, Ph.D. thesis, Tokyo Institute of Technology, Tokyo (2012)

  51. B.R. Patyal, B.L. Scott, R.D. Willett, Phys. Rev. B 41, 1657 (1990). https://doi.org/10.1063/1.16576162

    Article  ADS  Google Scholar 

  52. M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari, O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, T. Giamarchi, Phys. Rev. Lett. 101, 137207 (2008). https://doi.org/10.1063/1.16576163

    Article  ADS  Google Scholar 

  53. C. Rüegg, K. Kiefer, B. Thielemann, D.F. McMorrow, V. Zapf, B. Normand, M.B. Zvonarev, P. Bouillot, C. Kollath, T. Giamarchi, S. Capponi, D. Poilblanc, D. Biner, K.W. Krämer, Phys. Rev. Lett. 101, 247202 (2008). https://doi.org/10.1063/1.16576164

    Article  ADS  Google Scholar 

  54. E. Čižmár, M. Ozerov, J. Wosnitza, B. Thielemann, K.W. Krämer, C. Rüegg, O. Piovesana, M. Klanjšek, M. Horvatić, C. Berthier, S.A. Zvyagin, Phys. Rev. B 82, 054431 (2010). https://doi.org/10.1063/1.16576165

    Article  ADS  Google Scholar 

  55. P. Bouillot, C. Kollath, A.M. Läuchli, M. Zvonarev, B. Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjšek, C. Berthier, M. Horvatić, T. Giamarchi, Phys. Rev. B 83, 054407 (2011). https://doi.org/10.1063/1.16576166

    Article  ADS  Google Scholar 

  56. S.C. Furuya, P. Bouillot, C. Kollath, M. Oshikawa, T. Giamarchi, Phys. Rev. Lett. 108, 037204 (2012). https://doi.org/10.1063/1.16576167

    Article  ADS  Google Scholar 

  57. Y.V. Krasnikova, S.C. Furuya, V.N. Glazkov, K.Y. Povarov, D. Blosser, A. Zheludev, Phys. Rev. Lett. 125, 027204 (2020). https://doi.org/10.1063/1.16576168

    Article  ADS  Google Scholar 

  58. M. Nayak, D. Blosser, A. Zheludev, F. Mila, Phys. Rev. Lett. 124, 087203 (2020). https://doi.org/10.1063/1.16576169

    Article  ADS  Google Scholar 

  59. A. Shapiro, C.P. Landee, M.M. Turnbull, J. Jornet, M. Deumal, J.J. Novoa, M.A. Robb, W. Lewis, J. Am. Chem. Soc. 129(4), 952 (2007). https://doi.org/10.1021/ja066330m. PMID: 17243832

    Article  Google Scholar 

  60. T. Hong, Y.H. Kim, C. Hotta, Y. Takano, G. Tremelling, M.M. Turnbull, C.P. Landee, H.J. Kang, N.B. Christensen, K. Lefmann, K.P. Schmidt, G.S. Uhrig, C. Broholm, Phys. Rev. Lett. 105, 137207 (2010). https://doi.org/10.1103/PhysRevLett.27.13831

    Article  ADS  Google Scholar 

  61. H. Ohta, T. Yamasaki, S. Okubo, T. Sakurai, M. Fujisawa, H. Kikuchi, J. Phys. 320, 012026 (2011). https://doi.org/10.1088/1742-6596/320/1/012026

    Article  Google Scholar 

  62. D. Schmidiger, S. Mühlbauer, S.N. Gvasaliya, T. Yankova, A. Zheludev, Phys. Rev. B 84, 144421 (2011). https://doi.org/10.1103/PhysRevLett.27.13833

    Article  ADS  Google Scholar 

  63. D. Schmidiger, P. Bouillot, S. Mühlbauer, S. Gvasaliya, C. Kollath, T. Giamarchi, A. Zheludev, Phys. Rev. Lett. 108, 167201 (2012). https://doi.org/10.1103/PhysRevLett.27.13834

    Article  ADS  Google Scholar 

  64. K. Ninios, T. Hong, T. Manabe, C. Hotta, S.N. Herringer, M.M. Turnbull, C.P. Landee, Y. Takano, H.B. Chan, Phys. Rev. Lett. 108, 097201 (2012). https://doi.org/10.1103/PhysRevLett.27.13835

    Article  ADS  Google Scholar 

  65. M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zheludev, M. Horvatić, Phys. Rev. Lett. 111, 106404 (2013). https://doi.org/10.1103/PhysRevLett.27.13836

    Article  ADS  Google Scholar 

  66. K.Y. Povarov, D. Schmidiger, N. Reynolds, R. Bewley, A. Zheludev, Phys. Rev. B 91, 020406 (2015). https://doi.org/10.1103/PhysRevLett.27.13837

    Article  ADS  Google Scholar 

  67. V.N. Glazkov, M. Fayzullin, Y. Krasnikova, G. Skoblin, D. Schmidiger, S. Mühlbauer, A. Zheludev, Phys. Rev. B 92, 184403 (2015). https://doi.org/10.1103/PhysRevLett.27.13838

    Article  ADS  Google Scholar 

  68. M. Ozerov, M. Maksymenko, J. Wosnitza, A. Honecker, C.P. Landee, M.M. Turnbull, S.C. Furuya, T. Giamarchi, S.A. Zvyagin, Phys. Rev. B 92, 241113 (2015). https://doi.org/10.1103/PhysRevLett.27.13839

    Article  ADS  Google Scholar 

  69. M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zheludev, M. Horvatić, Phys. Rev. Lett. 118, 167206 (2017). https://doi.org/10.1103/PhysRevLett.66.1000

    Article  ADS  Google Scholar 

  70. S.C. Furuya, M. Oshikawa, Phys. Rev. Lett. 118, 021601 (2017). https://doi.org/10.1103/PhysRevLett.66.1001

    Article  ADS  Google Scholar 

  71. S.C. Furuya, M. Sato, J. Phys. Soc. Jpn. 84(3), 033704 (2015). https://doi.org/10.7566/JPSJ.84.033704

    Article  ADS  Google Scholar 

  72. K. Nagata, Y. Tazuke, J. Phys. Soc. Jpn. 32(2), 337 (1972). https://doi.org/10.1143/JPSJ.32.337

    Article  ADS  Google Scholar 

  73. A.E. Feiguin, S.R. White, Phys. Rev. B 72, 220401 (2005). https://doi.org/10.1103/PhysRevLett.66.1004

    Article  ADS  Google Scholar 

  74. T. Kaplan, Z. Phys. B Condens. Matter 49(4), 313 (1983)

    Article  ADS  Google Scholar 

  75. L. Shekhtman, O. Entin-Wohlman, A. Aharony, Phys. Rev. Lett. 69, 836 (1992). https://doi.org/10.1103/PhysRevLett.66.1005

    Article  ADS  Google Scholar 

  76. L. Shekhtman, A. Aharony, O. Entin-Wohlman, Phys. Rev. B 47, 174 (1993). https://doi.org/10.1103/PhysRevLett.66.1006

    Article  ADS  Google Scholar 

  77. A. Zheludev, S. Maslov, I. Tsukada, I. Zaliznyak, L.P. Regnault, T. Masuda, K. Uchinokura, R. Erwin, G. Shirane, Phys. Rev. Lett. 81, 5410 (1998). https://doi.org/10.1103/PhysRevLett.66.1007

    Article  ADS  Google Scholar 

  78. R. Kubo, K. Tomita, J. Phys. Soc. Jpn. 9(6), 888 (1954). https://doi.org/10.1143/JPSJ.9.888

    Article  ADS  Google Scholar 

  79. S.C. Furuya, T. Momoi, Phys. Rev. B 97, 104411 (2018). https://doi.org/10.1103/PhysRevLett.66.1009

    Article  ADS  Google Scholar 

  80. T. Giamarchi, C. Rüegg, O. Tchernyshyov, Nat. Phys. 4(3), 198 (2008)

    Article  Google Scholar 

  81. V. Zapf, M. Jaime, C.D. Batista, Rev. Mod. Phys. 86, 563 (2014). https://doi.org/10.1103/PhysRevLett.96.0272131

    Article  ADS  Google Scholar 

  82. T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000). https://doi.org/10.1103/PhysRevLett.96.0272132

    Article  ADS  Google Scholar 

  83. M.E. Zhitomirsky, H. Tsunetsugu, Europhys. Lett. 92(3), 37001 (2010). https://doi.org/10.1209/0295-5075/92/37001

    Article  Google Scholar 

  84. B. Gibson, R. Kremer, A. Prokofiev, W. Assmus, G. McIntyre, Phys. B 350(1), E253 (2004). https://doi.org/10.1016/j.physb.2004.03.064. Proceedings of the Third European Conference on Neutron Scattering

    Article  ADS  Google Scholar 

  85. M. Enderle, C. Mukherjee, B. Fåk, R.K. Kremer, J.M. Broto, H. Rosner, S.L. Drechsler, J. Richter, J. Malek, A. Prokofiev, W. Assmus, S. Pujol, J.L. Raggazzoni, H. Rakoto, M. Rheinstädter, H.M. Rønnow, Europhys. Lett. 70(2), 237 (2005). https://doi.org/10.1209/epl/i2004-10484-x

    Article  ADS  Google Scholar 

  86. N. Büttgen, H.A. Krug von Nidda, L.E. Svistov, L.A. Prozorova, A. Prokofiev, W. Aßmus, Phys. Rev. B 76, 014440 (2007). https://doi.org/10.1103/PhysRevLett.96.0272136

    Article  ADS  Google Scholar 

  87. T. Masuda, M. Hagihala, Y. Kondoh, K. Kaneko, N. Metoki, J. Phys. Soc. Jpn. 80(11), 113705 (2011). https://doi.org/10.1143/JPSJ.80.113705

    Article  ADS  Google Scholar 

  88. M. Mourigal, M. Enderle, B. Fåk, R.K. Kremer, J.M. Law, A. Schneidewind, A. Hiess, A. Prokofiev, Phys. Rev. Lett. 109, 027203 (2012). https://doi.org/10.1103/PhysRevLett.109.027203

    Article  ADS  Google Scholar 

  89. K. Nawa, M. Takigawa, M. Yoshida, K. Yoshimura, J. Phys. Soc. Jpn. 82(9), 094709 (2013). https://doi.org/10.7566/JPSJ.82.094709

    Article  ADS  Google Scholar 

  90. K. Nawa, M. Yoshida, M. Takigawa, Y. Okamoto, Z. Hiroi, Phys. Rev. B 96, 174433 (2017). https://doi.org/10.1143/JPSJ.75.0837010

    Article  ADS  Google Scholar 

  91. R. Nath, A.A. Tsirlin, H. Rosner, C. Geibel, Phys. Rev. B 78, 064422 (2008). https://doi.org/10.1143/JPSJ.75.0837011

    Article  ADS  Google Scholar 

  92. M. Sato, T. Momoi, A. Furusaki, Phys. Rev. B 79, 060406 (2009). https://doi.org/10.1143/JPSJ.75.0837012

    Article  ADS  Google Scholar 

  93. M. Sato, T. Hikihara, T. Momoi, Phys. Rev. B 83, 064405 (2011). https://doi.org/10.1143/JPSJ.75.0837013

    Article  ADS  Google Scholar 

  94. L. Savary, T. Senthil, arXiv arXiv:1506.04752 (2015)

  95. S.C. Furuya, Phys. Rev. B 95, 014416 (2017). https://doi.org/10.1143/JPSJ.75.0837014

    Article  ADS  Google Scholar 

  96. A. Smerald, H.T. Ueda, N. Shannon, Phys. Rev. B 91, 174402 (2015). https://doi.org/10.1143/JPSJ.75.0837015

    Article  ADS  Google Scholar 

  97. J. Hubbard, B.H. Flowers, Proceedings of the Royal Society of London. Series A. Math. Phys. Sci. 276(1365), 238 (1963). https://doi.org/10.1098/rspa.1963.0204

    Article  Google Scholar 

  98. F. Michaud, F.M.C. Vernay, S.R. Manmana, F. Mila, Phys. Rev. Lett. 108, 127202 (2012). https://doi.org/10.1103/PhysRevLett.108.127202

    Article  ADS  Google Scholar 

  99. N. Papanicolaou, Nucl. Phys. B 240(3), 281 (1984). https://doi.org/10.1016/0550-3213(84)90268-2

    Article  ADS  Google Scholar 

  100. N. Papanicolaou, Nucl. Phys. B 305(3), 367 (1988). https://doi.org/10.1016/0550-3213(88)90073-9

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I appreciate my Ph.D. supervisor, Prof. Masaki Oshikawa for his support and numerous insightful discussions. I am also grateful to my collaborators of experimental and theoretical physicists, especially to coauthors of my papers [16, 56, 57, 68, 79] that this review article is based on. S.C.F. is supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Quantum Liquid Crystals” (Grant No. JP19H05825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke C. Furuya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuya, S.C. ESR Theories for Hidden Magnetic Modes in Exotic Quantum Spin Systems. Appl Magn Reson 52, 473–506 (2021). https://doi.org/10.1007/s00723-020-01291-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01291-1

Mathematics Subject Classification

PACs

Navigation