Skip to main content
Log in

An Adjustable TD-NMR Method for Rapid and Quantitative Analysis of Body Composition in Awake Mice

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

This paper describes an adjustable method for body composition analysis of awake mice based on time domain nuclear magnetic resonance (TD-NMR) technology. A T1-weighted CPMG pulse sequence was introduced to acquire the NMR signals that contain both longitudinal (T1) and transversal (T2) relaxation information of mice. It took less than 90 s to dramatically lighten the burden on animals. A model training according to a well-designed factorial experiment was conducted by measuring a series of artificial samples, and the relations between NMR signals and body components (lean, fat and free fluid) were established. This NMR model gave a good fitting (R2 > 0.99) between real values and predictive values and measuring stability were also demonstrated. A calibration method was highlighted to figure out how to keep NMR model effective on another NMR scanner or avoid the error from fluctuation of machine without a time-consuming re-modeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.C. Wells, M.S. Fewtrell, Arch. Dis. Child. 91, 612 (2006)

    Article  Google Scholar 

  2. T. Erselcan, F. Candan, S. Saruhan, T. Ayca, Ann. Nutr. Metab. 44, 243 (2000)

    Article  Google Scholar 

  3. Y.B. Yang, D.L. Smith, K.D. Keating, D.B. Allison, T.R. Nagy, Obesity 22, 2147 (2014)

    Article  Google Scholar 

  4. A. Andres, A.D. Mitchell, T.M. Badger, Int. J. Obes. 34, 775 (2010)

    Article  Google Scholar 

  5. J. Stenger, C. Bielajew, Physiol. Behav. 57, 319 (1995)

    Article  Google Scholar 

  6. M.N. Metzinger, B. Miramontes, P. Zhou, Y. Liu, S. Chapman, L. Sun, T.A. Sasser, G.E. Duffield, M.S. Stack, W.M. Leevy, Sensors (Basel) 14, 18526 (2014)

    Article  Google Scholar 

  7. S. Halldorsdottir, J. Carmody, C.N. Boozer, C.A. Leduc, R.L. Leibel, Int. J. Body Compos. Res. 7, 147 (2009)

    Google Scholar 

  8. J. Kullberg, J. Brandberg, J.E. Angelhed, H. Frimmel, E. Bergelin, L. Strid, H. Ahlstrom, L. Johansson, L. Lonn, Br. J. Radiol. 82, 123 (2009)

    Article  Google Scholar 

  9. M.F. Marcone, S. Wang, W. Albabish, S. Nie, D. Somnarain, A. Hill, Food Res. Int. 51, 729 (2013)

    Article  Google Scholar 

  10. J. Kruk, M. Doskocz, E. Jodlowska, A. Zacharzewska, J. Lakomiec, K. Czaja, J. Kujawski, Appl. Magn. Reson. 48, 1 (2017)

    Article  Google Scholar 

  11. K.E. Washburn, E.R. McCarney, Appl. Magn. Reson. 49, 429 (2018)

    Article  Google Scholar 

  12. B. Dai, S. Huang, Y. Deng, Food Res. Int. 116, 1239 (2019)

    Article  Google Scholar 

  13. J.P. Nixon, M. Zhang, C. Wang, M.A. Kuskowski, C.M. Novak, J.A. Levine, C.J. Billington, C.M. Kotz, Obesity 18, 1652 (2010)

    Article  Google Scholar 

  14. E. Rodríguez-Alonso, F.J. Vergeldt, A.J. van der Goot, Magn. Reson. Chem. (2019). https://doi.org/10.1002/mrc.4815

    Article  Google Scholar 

  15. E. Kirtil, D. Dag, S. Guner, K. Unal, M.H. Oztop, Food Res. Int. 99, 807 (2017)

    Article  Google Scholar 

  16. Y. Gao, K. Xu, H. Peng, J. Jiang, R. Zhao, J. Lu, Appl. Sci. 9, 78 (2018)

    Article  Google Scholar 

  17. J.D. Ferreira, T.B. Moraes, L.A. Colnago, F.M.V. Pereira, Appl. Magn. Reson. 49, 653 (2018)

    Article  Google Scholar 

  18. A.E. DeJong, R.W. Hartel, J. Food Eng. 178, 117 (2016)

    Article  Google Scholar 

  19. H. Todt, G. Guthausen, W. Burk, D. Schmalbein, A. Kamlowski, Food Chem. 96, 436 (2006)

    Article  Google Scholar 

  20. O.V. Petrov, J. Hay, I.V. Mastikhin, B.J. Balcom, Food Res. Int. 41, 758 (2008)

    Article  Google Scholar 

  21. T. Rudi, G. Guthausen, W. Burk, C.T. Reh, H.D. Isengard, Food Chem. 106, 1375 (2008)

    Article  Google Scholar 

  22. M.S. Johnson, D.L. Smith, T.R. Nagy, Int. J. Body Compos. Res. 7, 99 (2009)

    Google Scholar 

  23. A.S. Jones, M.S. Johnson, T.R. Nagy, Int. J. Body Compos. Res. 7, 67 (2009)

    Google Scholar 

  24. G.Z. Taicher, F.C. Tinsley, A. Reiderman, M.L. Heiman, Anal. Bioanal. Chem. 377, 990 (2003)

    Article  Google Scholar 

  25. B. Künnecke, P. Verry, A. Bénardeau, M.V. Kienlin, Obesity 12, 1604 (2004)

    Article  Google Scholar 

  26. F.C. Tinsley, G.Z. Taicher, M.L. Heiman, Obes. Res. 12, 150 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Key Scientific Instrument and Equipment Development Project of China under Grant no. 51627808, National Natural Science Foundation of China under Grant no. 51605089, Jiangsu Province National Natural Science Foundation of China under Grant no. BK20150609. We thank advisors for their valuable scientific discussions, and lab partners for their support and help in writing analysis program and building the NMR scanners.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongsheng Lu or Hong Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

It is to be noted that artificial samples should be similar to the living mice in NMR characteristics, so that these samples can represent the living mice effectively and ensure the reliability of the measurement results. To verify the validity of selected materials of artificial samples, T1 and T2 distributions of the mixture of fresh chicken and refined rapeseed oil were measured as shown in Fig. 7. The three T2 peaks of the mixture are, respectively, in 1–10 ms, 10–102 ms and 102–103 ms, and two T1 peaks are in 10–102 ms and 102–103 ms. The T1 and T2 distributions of artificial samples have strong correlation with those of living mice. It can be concluded that the artificial samples and living mice are consistent in NMR characteristics. Consequently, the method of simulating living mice with chicken breasts, rapeseed oil and saline is effective and reliable.

Fig. 7
figure 7

T1 and T2 distribution of living mouse and mixture. aT2 distribution of living mouse. bT1 distribution of living mouse. cT2 distribution of mixture. dT1 distribution of mixture

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Zhou, X., Xie, Z. et al. An Adjustable TD-NMR Method for Rapid and Quantitative Analysis of Body Composition in Awake Mice. Appl Magn Reson 51, 241–253 (2020). https://doi.org/10.1007/s00723-019-01180-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01180-2

Navigation