Skip to main content
Log in

De-noising Multi-coil Magnetic Resonance Imaging Using Patch-Based Adaptive Filtering in Wavelet Domain

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) frequently requires transform domain de-noising methods to preserve important features in the reconstructed images such as corners, sharp structures, and edges. Wavelet transform-based image de-noising is a standard approach used in MRI to recover smooth surface and sharp edges from the given noisy MR images, thereby improving diagnostic interpretations. Parallel magnetic resonance imaging (pMRI) techniques such as SENSE have been recently developed with an aim to improve the data acquisition speed, signal-to-noise ratio (SNR), and spatial resolution of the reconstructed images. However, the SENSE reconstruction algorithm often encounters noise during data acquisition and reconstruction process which not only contaminates the quality of the reconstructed images but also leads to poor diagnostic interpretations in clinical settings. During SENSE reconstruction process, noise can appear in the reconstructed image mainly due to two reasons (1) imperfections in the receiver coils; (2) un-folding the aliased images of multiple receiver coils to obtain a single composite image. In this paper, a new adaptive patch-based filtering in wavelet domain is presented to recover sharp structures and edges without introducing any artifacts in the SENSE reconstructed images. The proposed method uses soft-thresholding function as a shrinkage process which typically involves thresholding the small wavelet coefficients to reduce the noise without affecting the important features in the SENSE reconstructed images. For the evaluation of the proposed method, several experiments are performed using simulated phantom and in vivo data sets. The SENSE reconstruction quality using the proposed method is compared with contemporary de-nosing techniques, in terms of structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). Experimental results demonstrate that the SENSE reconstruction using the proposed method when compared to the other contemporary de-nosing methods successfully removes the noise and preserves the fine details in the reconstructed MR images without introducing blurring artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.G. van der Kolk, J. Hendrikse, J.J. Zwanenburg, F. Visser, P.R. Luijten, Eur. J. Radiol. 82, 708–718 (2013)

    Google Scholar 

  2. D.W. McRobbie, E.A. Moore, M.J. Graves, M.R. Prince, MRI from Picture to Proton (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  3. B.A. Poser, K. Setsompop, NeuroImage 168, 101–118 (2018)

    Google Scholar 

  4. R.J. Stafford, High Field MRI: Technology, Applications, Safety, and Limitations, in 46th AAPM Annual Meeting, American Association of Physicists in Medicine, 2004

  5. A. Deshmane, V. Gulani, M.A. Griswold, N. Seiberlich, J. Magn. Reson. Imaging 36, 55–72 (2012)

    Google Scholar 

  6. I. Ullah, O. Inam, I. Aslam, H. Omer, Appl. Magn. Reson. 50, 243–261 (2019)

    Google Scholar 

  7. M. Qureshi, M. Kaleem, H. Omer, Biomed. Res. 28, 1618–1623 (2017)

    Google Scholar 

  8. D. Xie, L. Bai, Z. Wang, arXiv preprint arXiv:1801.09672 (2018)

  9. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42, 952–962 (1999)

    Google Scholar 

  10. S. Aja-Fernández, G. Vegas-Sánchez-Ferrero, A. Tristán-Vega, Magn. Reson. Imaging 32, 281–290 (2014)

    Google Scholar 

  11. S. Aja-Fernández, C. Alberola-López, C.-F. Westin, IEEE Trans. Image Process. 17, 1383–1398 (2008)

    ADS  MathSciNet  Google Scholar 

  12. H. Liu, C. Yang, N. Pan, E. Song, R. Green, Magn. Reson. Imaging 28, 1485–1496 (2010)

    Google Scholar 

  13. M. Maggioni, V. Katkovnik, K. Egiazarian, A. Foi, IEEE Trans. Image Process. 22, 119–133 (2013)

    ADS  MathSciNet  Google Scholar 

  14. D.J. Larkman, R.G. Nunes, Phys. Med. Biol. 52, R15 (2007)

    ADS  Google Scholar 

  15. P. Jain, V. Tyagi, Inf. Syst. Front. 18, 159–170 (2016)

    Google Scholar 

  16. L. Sendur, I.W. Selesnick, IEEE Signal Process. Lett. 9, 438–441 (2002)

    ADS  Google Scholar 

  17. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image Process. Algorithms Syst. Neural Netw. Mach. Learn. 6064, 1–12 (2006)

    Google Scholar 

  18. T. Qiu, A. Wang, N. Yu, A. Song, IEEE Trans. Image Process. 22, 80–90 (2013)

    ADS  MathSciNet  Google Scholar 

  19. S.G. Chang, B. Yu, M. Vetterli, IEEE Trans. Image Process. 9, 1532–1546 (2000)

    ADS  MathSciNet  Google Scholar 

  20. H. Choi, R.G. Baraniuk, IEEE Signal Process. Lett. 11, 717–720 (2004)

    ADS  Google Scholar 

  21. Z. Hou, Pattern Recogn. 36, 1747–1763 (2003)

    Google Scholar 

  22. D.L. Donoho, IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Google Scholar 

  23. M. Blaimer, F. Breuer, M. Mueller, R.M. Heidemann, M.A. Griswold, P.M. Jakob,  Top. Magn. Reson. Imaging 15, 223–236 (2004)

    Google Scholar 

  24. A.S. Irfan, A. Nisar, H. Shahzad, H. Omer, Appl. Magn. Reson. 47, 487–498 (2016)

    Google Scholar 

  25. M.A. Ohliger, D.K. Sodickson, NMR Biomed. 19, 300–315 (2006)

    Google Scholar 

  26. J. Mohan, V. Krishnaveni, Y. Guo, Biomed. Signal Process. Control 9, 56–69 (2014)

    Google Scholar 

  27. R.M. Henkelman, Med. Phys. 12, 232–233 (1985)

    Google Scholar 

  28. S.O. Rice, Bell Syst. Tech. J. 23, 282–332 (1944)

    ADS  Google Scholar 

  29. O. Dietrich, J.G. Raya, S.B. Reeder, M. Ingrisch, M.F. Reiser, S.O. Schoenberg, Magn. Reson. Imaging 26, 754–762 (2008)

    Google Scholar 

  30. W. Edelstein, P.A. Bottomley, L.M. Pfeifer, Med. Phys. 11, 180–185 (1984)

    Google Scholar 

  31. C.D. Constantinides, E. Atalar, E.R. McVeigh, Magn. Reson. Med. 38, 852–857 (1997)

    Google Scholar 

  32. P. Kellman, E.R. McVeigh, Magn. Reson. Med. 54, 1439–1447 (2005)

    Google Scholar 

  33. R.D. Da Silva, R. Minetto, W.R. Schwartz, H. Pedrini, Pattern Anal. Appl. 16, 567–580 (2013)

    Google Scholar 

  34. P. Jain, V. Tyagi, Multimed. Tools Appl. 76, 1659–1679 (2017)

    Google Scholar 

  35. S.G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 7, 674–693 (1989)

    ADS  Google Scholar 

  36. M. Dai, C. Peng, A.K. Chan, D. Loguinov, IEEE Trans. Geosci. Remote Sens. 42, 1642–1648 (2004)

    ADS  Google Scholar 

  37. A.-J. Van Der Veen, E.F. Deprettere, A.L. Swindlehurst, Proc. IEEE 81, 1277–1308 (1993)

    Google Scholar 

  38. D. Fish, J. Grochmalicki, E. Pike, JOSA A 13, 464–469 (1996)

    ADS  Google Scholar 

  39. K. Konstantinides, B. Natarajan, G.S. Yovanof, IEEE Trans. Image Process. 6, 479–483 (1997)

    ADS  Google Scholar 

  40. Y. Wongsawat, K.R. Rao, S. Oraintara, Multichannel SVD-based image de-noising, in 2005 IEEE International Symposium on Circuits and Systems, (2005), pp. 5990–5993

  41. R. Frayne, B.G. Goodyear, P. Dickhoff, M.L. Lauzon, R.J. Sevick, Investig. Radiol. 38, 385–402 (2003)

    Google Scholar 

  42. O. Inam, M. Qureshi, S.A. Malik, H. Omer, BioMed. Res. Int. 2017, 3872783 (2017)

    Google Scholar 

  43. J.H. Letcher, Magn. Reson. Imaging 7, 581–583 (1989)

    Google Scholar 

  44. G.P. Nason, B.W. Silverman, in The Stationary Wavelet Transform and Some Statistical Applications. Wavelets and Statistics (Springer, New York, 1995), pp. 281–299

    MATH  Google Scholar 

  45. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, IEEE Trans. Image Process. 13, 600–612 (2004)

    ADS  Google Scholar 

  46. S.E. Ghrare, S.M. Shreef, World Acad. Sci. Eng. Technol. 72, 12 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omair Inam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inam, O., Qureshi, M. & Omer, H. De-noising Multi-coil Magnetic Resonance Imaging Using Patch-Based Adaptive Filtering in Wavelet Domain. Appl Magn Reson 50, 1325–1343 (2019). https://doi.org/10.1007/s00723-019-01153-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01153-5

Navigation