Skip to main content
Log in

1H NMR study of the effect of cucurbit[7]uril on the aquation of carboplatin in biologically relevant media

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The aquation of carboplatin, a second-generation Pt(II)-based antitumor drug, in two biologically relevant media (PBS buffer solution and RPMI-1640 medium for cell growth) has been studied by means of 1H nuclear magnetic resonance spectroscopy. The effect of the macrocyclic cavitand cucurbit[7]uril on the carboplatin aquation rates in these two types of media has also been studied. Although, the cucurbit[7]uril does not form stable inclusion complex with carboplatin, it greatly affects the carboplatin aquation rates, presumably, through the two mechanisms: prevention of the carboplatin dimer formation and encapsulation of some components of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.J. Di Pasqua, J. Goodisman, J.C. Dabrowiak, Inorganica Chim. Acta 389, 29 (2012)

    Article  Google Scholar 

  2. S. Dilruba, G.V. Kalayda, Cancer Chemother. Pharmacol. 77, 1103 (2016)

    Article  Google Scholar 

  3. I.V. Mirzaeva, N.K. Moroz, I.V. Andrienko, E.A. Kovalenko, J. Mol. Struct. 1163, 68 (2018)

    Article  ADS  Google Scholar 

  4. M. Apps, E. Choi, N. Wheate, Endocr. Relat. Cancer 22, R219 (2015)

    Article  Google Scholar 

  5. N.J. Wheate, J. Inorg. Biochem. 102, 2060 (2008)

    Article  Google Scholar 

  6. O.A. Gerasko, E.A. Kovalenko, V.P. Fedin, Russ. Chem. Rev. 85, 795 (2016)

    Article  ADS  Google Scholar 

  7. N.J. Wheate, C. Limantoro, Supramol. Chem. 28, 849 (2016)

    Article  Google Scholar 

  8. J.A. Plumb, B. Venugopal, R. Oun, N. Gomez-Roman, Y. Kawazoe, N.S. Venkataramanan, N.J. Wheate, Metallomics 4, 561 (2012)

    Article  Google Scholar 

  9. N.J. Wheate, D.P. Buck, A.I. Day, J.G. Collins, Dalt. Trans. (2006). https://doi.org/10.1039/B513197A

    Article  Google Scholar 

  10. Y. Jin Jeon, S.-Y. Kim, Y. Ho Ko, S. Sakamoto, K. Yamaguchi, K. Kim, Org. Biomol. Chem. 3, 2122 (2005)

    Article  Google Scholar 

  11. Y. Chen, Z. Huang, H. Zhao, J.F. Xu, Z. Sun, X. Zhang, A.C.S. Appl, Mater. Interfaces 9, 8602 (2017)

    Article  Google Scholar 

  12. N.S. Venkataramanan, S. Ambigapathy, H. Mizuseki, Y. Kawazoe, J. Phys. Chem. B 116, 14029 (2012)

    Article  Google Scholar 

  13. N.J. Wheate, P.G.A. Kumar, A.M. Torres, J.R. Aldrich-Wright, W.S. Price, J. Phys. Chem. B 112, 2311 (2008)

    Article  Google Scholar 

  14. A.V. Chernyak, N.A. Slesarenko, V.I. Volkov, Appl. Magn. Reson. 50, 199 (2019). https://doi.org/10.1007/s00723-018-1063-5

    Article  Google Scholar 

  15. S. Chandrasekaran, I.V. Muthu, V. Enoch, J. Struct. Chem. 56, 1325 (2015)

    Article  Google Scholar 

  16. A. Sharma, S. Obrai, R. Kumar, A. Kaur, M.S. Hundal, J. Struct. Chem. 56, 1379 (2015)

    Article  Google Scholar 

  17. A. Day, A.P. Arnold, R.J. Blanch, B. Snushall, J. Org. Chem. 66, 8094 (2001)

    Article  Google Scholar 

  18. M.E. Bush, N.D. Bouley, A.R. Urbach, J. Am. Chem. Soc. 127, 14511 (2005)

    Article  Google Scholar 

  19. E.A. Kovalenko, D.A. Mainichev, Appl. Magn. Reson. 46, 281 (2015)

    Article  Google Scholar 

  20. E.A. Kovalenko, D.A. Mainichev, O.A. Gerasko, D.Y. Naumov, V.P. Fedin, Russ. Chem. Bull. 60, 841 (2011)

    Article  Google Scholar 

  21. R. Gust, B. Schnurr, Monatshefte für Chemie/Chem. Mon. 130, 637 (1999)

    Google Scholar 

  22. R.W. Hay, S. Miller, Polyhedron 17, 2337 (1998)

    Article  Google Scholar 

  23. A. Ciancetta, C. Coletti, A. Marrone, N. Re, Dalt. Trans. 41, 12960 (2012)

    Article  Google Scholar 

  24. U. Frey, J.D. Ranford, P.J. Sadler, Inorg. Chem. 32, 1333 (1993)

    Article  Google Scholar 

  25. M. Sooriyaarachchi, A. Narendran, J. Gailer, Metallomics 3, 49 (2011)

    Article  Google Scholar 

  26. L. Canovese, L. Cattalini, G. Chessa, M.L. Tobe, J. Chem. Soc. Dalt. Trans. (1988). https://doi.org/10.1039/DT9880002135

    Article  Google Scholar 

  27. K.J. Barnham, M.I. Djuran, P.D.S. Murdoch, J.D. Ranford, P.J. Sadler, Inorg. Chem. 35, 1065 (1996)

    Article  Google Scholar 

  28. J. Kuduk-Jaworska, J.J. Jański, S. Roszak, J. Inorg. Biochem. 170, 148 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research (RFBR) grant 18-315-00158 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Valerievna Mirzaeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaeva, I.V., Andrienko, I.V., Kovalenko, E.A. et al. 1H NMR study of the effect of cucurbit[7]uril on the aquation of carboplatin in biologically relevant media. Appl Magn Reson 50, 1267–1276 (2019). https://doi.org/10.1007/s00723-019-01147-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01147-3

Navigation