Skip to main content
Log in

An Improved NMR Permeability Model for Macromolecules Flowing in Porous Medium

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The extraction of macromolecules from nano-self-assembled material can be used as a laboratory model for enhancing oil recovery in reservoirs. By combining Darcy’s law and Poiseuille equation, an improved nuclear magnetic resonance (NMR) permeability model, suitable for macromolecular flow in mesopores is obtained. The calibration coefficients in the Coates equation are expressed in terms of the physical parameters of pore throat ratio rb/rt, tortuosity, and thickness of bond film in the improved model. The results show that the proportion of irreducible fluid to total fluid obtained through NMR characterization can reflect the variation tendency of irreducible macromolecule and water. By simplifying the pores of the extracted samples, the thickness model of irreducible macromolecule and water is established with the total thicknesses calculated as 1.482 nm, 1.585 nm, 1.674 nm, and 1.834 nm. The corresponding permeability results obtained from the NMR characterization (KNMR) are 7.39 mD, 6.02 mD, 5.27 mD, and 6.25 mD. The permeability results obtained from mercury intrusion experiment (KHG) are 5.10 mD, 4.73 mD, 5.82 mD, and 5.56 mD, and those from the Darcy flow experiment (KD) are 4.1 mD and 5.19 mD. The absolute deviation between KNMR and KHG varies from 0.69 to 2.29 mD, while that between KNMR and KD is 1.58 mD. This method can be applied to the enhanced recovery of shale oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Neuzil, Water Resour. Res. 30, 145–150 (1994). https://doi.org/10.1029/93WR02930

    Article  ADS  Google Scholar 

  2. D.V. Ellis, J.M. Singer, Well Logging for Earth Scientists, 2nd edn. (Elsiever Science Publisher, New York, 2008)

    Google Scholar 

  3. L.M. Schwartz, J.R. Banavar, Phys. Rev. B 39(16), 11965–11971 (1989). https://doi.org/10.1103/PhysRevB.39.11965

    Article  ADS  Google Scholar 

  4. J.P. Van Baaren, in Transactions of the 6th Annual European Logging Symposium (Society of Petrophysicists and Well Log Analysts, 1979), pp. 19–25

  5. B.F. Swanson, J. Pet. Technol. 33, 2498–2504 (1981)

    Article  Google Scholar 

  6. Y. Yang, A.C. Aplin, Mar. Pet. Geol. 27, 1692–1697 (2010). https://doi.org/10.1016/j.marpetgeo.2009.07.001

    Article  Google Scholar 

  7. A. Timur, Log Anal. 9, 8–17 (1968)

    Google Scholar 

  8. Y. Yang, A.C. Aplin, Mar. Pet. Geol. 15, 163–175 (1998). https://doi.org/10.1016/S0264-8172(98)00008-7

    Article  Google Scholar 

  9. J. Kozeny, Sitz. Akad. Wiss. Wien 136, 271–306 (1927)

    Google Scholar 

  10. P.C. Carman, Trans. Inst. Chem. Eng. 15, 150–167 (1937)

    Google Scholar 

  11. P.C. Carman, J. Soc. Chem. Ind. 57, 225–234 (1938)

    Google Scholar 

  12. S.H. Lee, A. Datta-Gupta, in SPE Annual Technical Conference and Exhibition on Society of Petroleum Engineers (Houston, Texas, 3–6 October 1999), p. 56658

  13. S.J. Cuddy, P.W.J. Glover, The Application of Fuzzy Logic and Genetic Algorithms to Reservoir Characterization and Modeling 80 (Physica-Verlag, Berlin, 2002), pp. 219–242

    Google Scholar 

  14. H.B. Helle, A. Bhatt, B. Ursin, Geophys. Prospect. 49, 431–444 (2001)

    Article  ADS  Google Scholar 

  15. W.E. Kenyon, J.A. Kolleeny, J. Colloid Interface Sci. 170(2), 502–514 (1995). https://doi.org/10.1006/jcis.1995.1129

    Article  ADS  Google Scholar 

  16. W.E. Kenyon, P.I. Day, C. Straley, J.F. Willemsen, SPE Formation Eval. 3, 622–636 (1988)

    Article  Google Scholar 

  17. G.R. Coates, R.C.A. Peveraro, A. Hardwick, D. Roberts, in SPE Annual Technical Conference and Exhibition on Society of Petroleum Engineers (Dallas, Texas, 6–9 October 1991), p. 22723

  18. R. Sigal, Petrophysics 43, 38 (2002)

    Google Scholar 

  19. S. Chen, D. Jacobi, H. Kwak, M. Altunbay, J. Kloos, in Paper E, Transactions, SPWLA 49th Annual Logging Symposium, Edinburgh, Scotland, May 25–28 (2008)

  20. W.D. Logan, J.P. Horkowitz, R. Laronga, D.W. Crom-well, SPE Reserv. Eval. Eng. 1(5), 438–448 (1998)

    Article  Google Scholar 

  21. I. Hidajat, K.K. Mohanty, M. Flaum, G. Hirasaki, SPE Reserv. Eval. Eng. 7(5), 365–377 (2004)

    Article  Google Scholar 

  22. R.M. Slatt, N.R. Obrien, AAPG Bull. 95(12), 2017–2030 (2011)

    Article  Google Scholar 

  23. R.G. Loucks, R.M. Reed, S.C. Ruppel, D.M. Jarvie, J. Sediment. Res. 79, 848 (2009)

    Article  ADS  Google Scholar 

  24. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994)

    Article  Google Scholar 

  25. H.W. Zhao, Z.F. Ning, Q. Wang, R. Zhang, T.Y. Zhao, T.F. Niu, Y. Zeng, Fuel 154, 233–242 (2015)

    Article  Google Scholar 

  26. W. Fazelipour, E. Roxar, in SPE Eastern Regional Meeting on Society of Petroleum Engineers (Morgantown, West Virginia, 13–15 October 2010), p. 139114

  27. X.L. Hou, Oil Refining Technology in China (China Petrochemical Press, Chengdu, 1991), pp. 41–44

    Google Scholar 

  28. L. Wang, L.Z. Xiao, L. Guo, G.Z. Liao, Y. Zhang, G. Ge, Acta Phys. Chim. Sin. 33, 1589–1598 (2017)

    Google Scholar 

  29. L. Wang, L.Z. Xiao, W.Z. Yue, Appl. Magn. Reson. 49(10), 1099–1118 (2018)

    Article  Google Scholar 

  30. R.L. Kleinberg, Magn. Reson. Imaging 14, 761–767 (1996)

    Article  Google Scholar 

  31. K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19, 2446–2453 (1979)

    Article  ADS  Google Scholar 

  32. J.H. Schön, Physical Properties of Rocks—Fundamentals and Principles of Petrophysics, 2nd edn. (Elsevier B.V, Amsterdam, 2015)

    Google Scholar 

  33. R.E. Collins, Flow of Fluids Through Porous Materials, Reinhold Chemical Engineering Series (Reinhold Publishing, New York, 1961)

    Google Scholar 

  34. E. Muller-Huber, J. Schon, J. Appl. Geophys. 127, 68–81 (2016)

    Article  ADS  Google Scholar 

  35. N.C. Wardlaw, J.P. Cassan, Bull. Can. Pet. Geol. 27(2), 117 (1979)

    Google Scholar 

  36. S.C. Carniglia, J. Catal. 102, 401 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21427812) and the “111 Project” Discipline Innovative Engineering Plan, China (B13010). Major national R&D projects (2016ZX05019-002-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhi Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

When incompressible viscous fluid flows along a horizontal pipe, it conforms to Poiseuille’s law, where q (m3/s) is fluid flow; ΔP (Pa) is the pressure drop at both ends of the tube; L (m) is the length of a porous medium model; η (Pa s) is fluid viscosity; r (m) is tube radius; and τ is tortuosity, which is the ratio of pore channel length l and porous medium L

$$q = \frac{\pi }{8\eta }r^{4} \frac{1}{\tau }\frac{\Delta p}{L}$$
(17)

The Darcy law is the experimental law reflecting the flow of fluid in porous media. It describes the linear relationship between flow velocity and hydraulic gradient

$$q = \frac{k}{\eta }A\frac{\Delta p}{L}$$
(18)

The permeability formula of a single capillary can be derived from combining the above two formulas

$$k = \frac{\pi }{8A}r^{4} \frac{1}{\tau }$$
(19)

The expression of the porosity of a cylindrical pore in porous media is given by

$$\emptyset = \frac{{V_{\text{pore}} }}{{V_{\text{total}} }} = \frac{{\pi r^{2} l}}{AL} = \frac{{\pi r^{2} \tau }}{A}.$$
(20)

Combining formulas (19) and (20),

$$k = \frac{1}{8}\emptyset \frac{{r^{2} }}{{\tau^{2} }}.$$
(21)

The specific surface to volume ratio of cylindrical channels is,

$$\frac{S}{V} = \frac{2\pi rl}{{\pi r^{2} l}} = \frac{2}{r}$$
(22)

Combining formulas (21) and (22),

$$k = \frac{1}{2}\emptyset \frac{1}{{\tau^{2} }}\left( {\frac{V}{S}} \right)^{2}$$
(23)

The cylindrical pore is an ideal pore shape for porous media. In fact, the aperture changes constantly. We take this variable factor into account and assume that the variable aperture conforms to a linear function

$$r\left( x \right) = r_{\text{t}} + ax,$$
(24)

where a is the pore shape factor,

$$a = \frac{{r_{\text{b}} - r_{\text{t}} }}{l}$$
(25)

The tortuosity can be expressed as \(\tau = l/L = 1/\cos \left( \gamma \right)\). Equation (19) is integrated along the X-axis of the pore channel

$$k = \frac{\pi }{8A}\frac{1}{\tau }\frac{1}{l}\mathop \int \limits_{0}^{l} r^{4} \left( x \right){\text{d}}x$$
(26)

The integral yields the following equation,

$$k = \frac{{\pi r_{\text{b}}^{4} }}{40A\tau }\left[ {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{3} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{4} } \right]$$
(27)

The porosity of the model (28) can be obtained by (Eq. 20)

$$\varphi = \frac{\pi \tau }{Al}\mathop \int \limits_{0}^{l} r^{2} \left( x \right){\text{d}}x$$
(28)

The integral along the X-axis including pore factor (Eq. 25) yields

$$\varphi = \frac{\pi \tau }{A} \frac{{\left( {r_{\text{b}}^{3} - r_{\text{t}}^{3} } \right)}}{{3\left( {r_{\text{b}} - r_{\text{t}} } \right)}} = \frac{{\pi \tau r_{\text{b}}^{2} \left[ {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} } \right]}}{3A}$$
(29)

The surface area and volume of the model can be written as follows,

$$S = 2\pi \tau \mathop \int \limits_{0}^{l} \left( {r_{\text{t}} + ax} \right){\text{d}}x = \pi \tau l\frac{{\left( {r_{\text{b}}^{2} - r_{\text{t}}^{2} } \right)}}{{\left( {r_{\text{b}} - r_{\text{t}} } \right)}}$$
(30)
$$V = \pi \tau \mathop \int \limits_{0}^{l} \left( {r_{\text{t}} + ax} \right)^{2} {\text{d}}x = \frac{\pi \tau l}{3}\frac{{\left( {r_{\text{b}}^{3} - r_{\text{t}}^{3} } \right)}}{{\left( {r_{\text{b}} - r_{\text{t}} } \right)}}$$
(31)

The expression of the specific surface area can be derived as

$$\frac{S}{V} = \frac{{3\left( {r_{\text{b}}^{2} - r_{\text{t}}^{2} } \right)}}{{\left( {r_{\text{b}}^{3} - r_{\text{t}}^{3} } \right)}} = \frac{{3\left( {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)}}{{r_{\text{b}} \left[ {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} } \right]}}$$
(32)

The formula (32) can be obtained in the following formula,

$$r_{\text{b}} = \frac{{3\left( {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)}}{{\frac{S}{V}\left[ {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} } \right]}}$$
(33)

Combining Eqs. (27) and (29) to obtain Eq. (34)

$$k = \frac{{\varphi r_{\text{b}}^{2} }}{{8\tau^{2} }}\left[ {\frac{{3\left[ {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{3} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{4} } \right]}}{{5\left[ {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} } \right]}}} \right].$$
(34)

Equation (33) is put into Eq. (34) to obtain Eq. (35).

$$k = \frac{1}{2}\varphi \frac{1}{{\tau^{2} }}\frac{1}{{\left( {\frac{S}{V}} \right)^{2} }}\left\{ {\frac{27}{20} \cdot \frac{{\left( {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} \left[ {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{3} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{4} } \right]}}{{\left[ {1 + \frac{{r_{\text{t}} }}{{r_{\text{b}} }} + \left( {\frac{{r_{\text{t}} }}{{r_{\text{b}} }}} \right)^{2} } \right]^{3} }}} \right\}$$
(35)

The relationship between the surface area to volume ratio and film thickness, BVI, and BVM is as follows.

$$\frac{S}{V} \approx \frac{1}{d}\frac{\hbox{BVI}}{\text{BVM}}$$
(36)

Equation (36) is put into Eq. (35) to obtain Eq. (37).

$$k = \frac{{\varphi d^{2} }}{{2\tau ^{2} }}\left( {\frac{{{\text{BVM}}}}{{{\text{BVI}}}}} \right)^{2} \left\{ {\frac{{27}}{{20}} \cdot \frac{{\left( {1 + \frac{{r_{{\text{t}}} }}{{r_{{\text{b}}} }}} \right)^{2} \left[ {1 + \frac{{r_{{\text{t}}} }}{{r_{{\text{b}}} }} + \left( {\frac{{r_{{\text{t}}} }}{{r_{{\text{b}}} }}} \right)^{2} + \left( {\frac{{r_{{\text{t}}} }}{{r_{{\text{b}}} }}} \right)^{3} + \left( {\frac{{r_{{\text{t}}} }}{{r_{{\text{b}}} }}} \right)^{4} } \right]}}{{\left[ {1 + \frac{{r_{{\text{t}}} }}{{r_{{\text{b}}} }} + \left( {\frac{{r_{{\text{t}}} }}{{r_{{\text{b}}} }}} \right)^{2} } \right]^{3} }}} \right\}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xiao, L., Zhang, Y. et al. An Improved NMR Permeability Model for Macromolecules Flowing in Porous Medium. Appl Magn Reson 50, 1099–1123 (2019). https://doi.org/10.1007/s00723-019-01140-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01140-w

Navigation