Skip to main content
Log in

Spectral Convolution for Quantitative Analysis in EPR Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A method for the determination of number of spins from EPR spectra with a high level of noise is proposed. The method is based on a convolution of the experimental spectrum with the spectrum of the same shape characterized by a high signal-to-noise ratio. It was shown that the convolution technique is rather robust to the presence of additive noise in examined EPR spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.E. Wertz, J.R. Bolton, Electron Spin Resonance (Elementary Theory and Practical Applications. McGraw Hill Book Co., New York, 1972)

    Google Scholar 

  2. A.N. Kuznetsov, The Method of Spin Probes (Nauka, Moscow, 1976)

    Google Scholar 

  3. L.J. Berliner (ed.), Spin Labeling. Theory and Applications (Academic Press, New York, 1976)

    Google Scholar 

  4. G.I. Likhtenshtein, The Method of Spin Labels in Molecular Biology (Nauka, Moscow, 1974)

    Google Scholar 

  5. M. Drescher, G. Jeschke (eds.), EPR Spectroscopy: Applications in Chemistry and Biology (Springer, Heidelberg, New York, 2012)

    Google Scholar 

  6. G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, Vienna, 2010)

    Book  Google Scholar 

  7. N.A. Chumakova, T.A. Ivanova, E.N. Golubeva, A.I. Kokorin, T Appl. Magn. Reson. 49, 511–522 (2018)

    Google Scholar 

  8. M. Srivastava, C.L. Anderson, J.H. Freed, IEEE Access 4, 3862–3877 (2016)

    Article  Google Scholar 

  9. ChE Cook, M. Bernfeld, Radar Signals (Academic Press, New York, London, 1967)

    Google Scholar 

  10. M.I. Skolnik, Radar Handbook (McGraw-Hill, Boston, 1990)

    Google Scholar 

  11. G.A. Korn, T.M. Korn, Mathematical Handbook (Nauka, Moscow, 1984)

    MATH  Google Scholar 

  12. A.I. Smirnov, R.L. Belford, J. Magn. Reson. A 190, 65–73 (1995)

    Article  ADS  Google Scholar 

  13. D.R. Duling, J. Magn. Reson. B 104, 105–110 (1994)

    Article  Google Scholar 

  14. W.R. Dunham, J.A. Fee, L.J. Harding, H.J. Grande, J. Magn. Reson. 40, 351–359 (1980)

    ADS  Google Scholar 

  15. N.D. Yordanov, Appl. Magn. Reson. 6, 241–257 (1994)

    Article  Google Scholar 

  16. N.D. Yordanov, M. Ivanova, Appl. Magn. Reson. 6, 333–340 (1994)

    Article  Google Scholar 

  17. A.Kh. Vorobiev, N.A. Chumakova, in Nitroxides Theory, Experiment and Applications, ed. by A.I. Kokorin (INTECH, Rijeka, 2012), pp. 57–112

    Google Scholar 

  18. D.J. Schneider, J.H. Freed, in Biological Magnetic Resonance, vol. 8, ed. by L.J. Berliner, J. Reuben (Plenum, New York, 1989), pp. 1–76

    Google Scholar 

  19. D.A. Chernova, A.Kh. Vorobiev, J. Appl. Polym. Sci. 121, 102–110 (2011)

    Article  Google Scholar 

  20. D.A. Chernova, A.K. Vorobiev, J. Polym. Sci. Part B Polym. Phys. 47(2009), 107–120 (2009)

    Article  ADS  Google Scholar 

  21. Yu.N. Molin, K.M. Salikhov, K.I. Zamaraev, Spin Exchange (Springer-Verlag, Berlin, New York, 1980)

    Book  Google Scholar 

  22. K.M. Salikhov, Appl. Magn. Reson. 38, 237–256 (2010)

    Article  Google Scholar 

  23. B.Y. Mladenova, N.A. Chumakova, V.I. Pergushov, A.I. Kokorin, G. Grampp, D.R. Kattnig, J. Phys. Chem. B 116, 12295–12305 (2012)

    Article  Google Scholar 

  24. M. Santoro, S.R. Shah, J.L. Walker, A.G. Mikos, Adv. Drug Deliv. Rev. 107, 206–212 (2016)

    Article  Google Scholar 

  25. N.V. Minaev, Patent registration number 147199, Russia (2014)

Download references

Acknowledgements

This work was supported by the Russian Foundation of Basic Research (grants 14-33-00017-п, 18-29-06059, 17-02-00445) and partially by Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Chumakova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

As an additive noise is considered, the distorted signal was calculated as follows:

$$I_{\exp } \left( B \right) = I_{\text{st}} \left( B \right) + I_{\text{noise}} \left( B \right).$$
(23)

\(I_{\text{noise}} \left( B \right)\) consists of randomly generated values in every point. In corresponding numerical tests, there is no relative shift of standard and experimental signals, so the maximum value of convolution function is at the point B = 0.

$$MaxConv = I_{\exp } {\ast} I_{\text{st}} \left( 0 \right).$$
(24)

We compared this value with another one obtained when noise is equal zero, i.e. when standard spectrum is convolved with itself (MaxConv0); besides, we calculated the relative deviation of MaxConv (Dev):

$$MaxConv_{0} = I_{\text{st}} {\ast} I_{\text{st}} \left( 0 \right),$$
(25)
$$\begin{aligned} Dev & = \frac{{MaxConv - MaxConv_{0} }}{{MaxConv_{0} }} = \frac{{I_{\exp } {\ast} I_{\text{st}} \left( 0 \right)}}{{I_{\text{st}} {\ast} I_{\text{st}} \left( 0 \right)}} - 1 \\ & = \frac{{I_{\text{st}} {\ast} I_{\text{st}} \left( 0 \right) + I_{\text{noise}} {\ast} I_{\text{st}} \left( 0 \right)}}{{I_{\text{st}} {\ast} I_{\text{st}} \left( 0 \right)}} - 1 = \frac{{I_{\text{noise}} {\ast} I_{\text{st}} \left( 0 \right)}}{{I_{\text{st}} {\ast} I_{\text{st}} \left( 0 \right)}} \\ \end{aligned}.$$
(26)

As follows from Eq. (26), the value of Dev is different for different functions of \(I_{\text{noise}} (B)\), i.e. for different noise scattering along the spectrum. For example, the structure of noise is not changed, if \(I_{\text{noise}}\) is multiplied by (− 1) and in agreement with Eq. (2), Dev also inverses its sign. The latter means that the mathematical expectation of Dev can be zero.

In the real experiment, the point B = 0 cannot be determined exactly. In such a case, the maximal value of convolution function is taken as MaxConv. This leads to a slight shift of mathematical expectation of Dev to a positive area. Figure 12 presents the MaxConv deviation in the first numerical experiment (triplet spectrum, a = 17 G, \(\Delta B_{\text{pp}}\)  = 1.5 G 2000 tries of noising) for SNR 20 (a) and 0.5 (b) with automatically measurement of MaxConv as a maximum of convolution function.

Fig. 12
figure 12

Distributions of MaxConv deviation in numerical experiment (2000 attempts of noising) for SNR 20 (a) and 0.5 (b) and their fitting with Gaussians

Appendix 2: Dependence of MaxConv Deviation vs Broadening of EPR Spectra

In the text above, we discussed the deviation of calculated MaxConv from its true value, if the linewidths of standard and experimental spectra are not coincided. Gaussian and Lorentzian profiles were considered. In many cases, line shapes are the convolution of Gaussian and Lorentzian functions [Voigt profile, V(B)]. Therefore, the Voigt profile is characterized by two parameters which are denoted here as \(\sigma_{\text{G}}\) and \(\sigma_{\text{L}}\). These parameters reflect the Gaussian and Lorentzian contribution to the line shape. In this appendix, the deviation of MaxConv in case of Voigt profile is considered.

Fourier-transform image of Voigt profile can be written in agreement with convolution theorem:

$${\mathcal{F}}\left[ {V_{{\sigma_{\text{G}} , \sigma_{\text{L}} }} } \right] = \frac{i\omega }{{\sqrt {2\pi } }}\exp \left( { - \frac{{\sigma_{\text{G}}^{2} \omega^{2} }}{2}} \right)\exp \left( { - \sqrt 3 \sigma_{L} \left| \omega \right|} \right).$$
(27)

For convenience, we change the designation. Further, we put \(\sigma = \sigma_{\text{G}} , \;\;\delta = \sqrt 3 \sigma_{\text{L}}\). Hence, the convolution of two Voigt profiles is as follows:

$${\mathcal{F}}\left[ {V_{\exp } {\ast} V_{\text{st}} } \right] = - \frac{{\omega^{2} }}{{\sqrt {2\pi } }}\exp \left( { - \frac{{\left[ {\sigma_{\text{st}}^{2} + \sigma_{\exp }^{2} } \right]\omega^{2} }}{2}} \right)\exp \left( { - \left[ {\delta_{\text{st}} + \delta_{\exp } } \right]\left| \omega \right|} \right),$$
(28)
$$MaxConv = \mathop \int \limits_{ - \infty }^{ + \infty } {\mathcal{F}}\left[ {V_{\exp } {\ast} V_{\text{st}} } \right]{\text{d}}\omega = \frac{{\exp \left( { - \frac{{\Delta^{2} }}{{2\varSigma^{2} }}} \right)\left( {\Delta^{2} + \varSigma^{2} } \right){\text{erfc}}\left( {\frac{\Delta }{{\sqrt {2\varSigma^{2} } }}} \right) - \sqrt {2/\pi } \varSigma \Delta }}{{\varSigma^{5} }},$$
(29)

where \(\Delta = \delta_{\text{st}} + \delta_{\exp } , \varSigma^{2} = \sigma_{\text{st}}^{2} + \sigma_{\exp }^{2}\).

If the line shape is not changed with broadening, i.e. Gaussian and Lorentzian contribution to the Voigt profile remains the same, we can take \(\alpha = \delta_{\exp } /\delta_{\text{st}} = \sigma_{\exp } /\sigma_{\text{st}} = \Delta B_{\text{pp}}^{\exp } /\Delta B_{\text{pp}}^{\text{st}}.\). Finally, the expression of the MaxConv deviation can be deduced:

$${\text{Deviation}}_{\text{V}} = \frac{MaxConv}{{MaxConv_{0} }} - 1 = \left( {\frac{{1 + \alpha^{2} }}{2}} \right)^{{ - \frac{3}{2}}} \frac{{f\left( {\xi t/\sqrt 2 } \right)}}{f\left( t \right)} - 1.$$
(30, 16 in the main text)

Herein \(t = \frac{{\delta_{\text{st}} }}{{\sigma_{\text{st}} }},\;\;\xi = \frac{1 + \alpha }{{\sqrt {1 + \alpha^{2} } }}\) and \(f\left( t \right) = \sqrt {2\pi } \exp \left( {t^{2} } \right){\text{erfc}}\left( t \right)\left( {2t^{2} + 1} \right) - 2\sqrt 2 t\). Note, that the parameter t points out the contribution of components to the Voigt profile, e.g. t = 0 is regarded as the Gaussian case and \(t = \infty\) as the Lorentzian one. Analysis of Eq. (30) is rather complicated but it can be found (at least, graphically) that for any \(\alpha\) (hence, for any fixed broadening) \({\text{Deviation}}_{\text{V}}\) is the monotonic function of parameter t and is changed from Gaussian limit (15a) to Lorentzian one (15b). Moreover, for any t (that means for any Voigt profile):

$${\text{Deviation}}_{\text{V}} = \frac{3}{2}\left( {1 - \alpha } \right) + \left( {1 - \alpha } \right).$$
(31, 17 in the main text)

One can use the first summand only with the minimum error for \(\alpha\) in the range [0.83, 1.20]. It should be noted that it is not always possible to estimate the parameters \(\sigma_{\text{G}}\) and \(\sigma_{\text{L }}\) in experiments. However, if \(\alpha > 1\), the difference between Gauss and Lorentz corrections is far less than the error of Q-factor measurement. This means that the formula (15a) or (15b) is acceptable in case of Voigt profile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakova, N.A., Kuzin, S.V. & Grechishnikov, A.I. Spectral Convolution for Quantitative Analysis in EPR Spectroscopy. Appl Magn Reson 50, 1125–1147 (2019). https://doi.org/10.1007/s00723-019-01133-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01133-9

Navigation