Skip to main content
Log in

Double-Tuned Surface 1H–23Na Radio Frequency Coils at 7 T: Comparison of Three Decoupling Methods

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) with nuclei other than protons (X-nuclei) often require the acquisition of proton signal for shimming and co-registration procedures. Double-Tuned Radio Frequency (DT-RF) coils improve these procedures, avoiding the need for movement and repositioning of the subject during the examination. The drawback of DT-RF coils is basically the coupling between the two resonant structures, which increases signal losses leading to a degradation of the final MR image. To improve MR signal quality acquired via DT-RF coils, a suitable decoupling strategy should be implemented. For this purpose, three DT-RF coil prototypes, which differed only in the decoupling method, were built and their performances were compared through workbench measurements. Each prototype consisted of two concentric loops. The inner and outer loops were tuned at sodium (≈ 79 MHz) and proton (≈ 300 MHz) Larmor frequency at 7 Tesla, respectively. Active and passive decoupling designs were compared measuring the Q factor and the S21 parameter for each prototype. Active decoupling was tested as an alternative to the standard passive decoupling with a trap circuit, in which a non-negligible amount of current flows at resonance, perturbing the magnetic field responsible for producing the MR image. Workbench measurements showed satisfactory Q factors and S21 for both active and passive decoupling cases. Thus, active decoupling could be a promising alternative to achieve better MR signal quality. Furthermore, for active decoupling, two circuit elements were examined: PIN diodes and micro-electromechanical system (MEMS) switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Hilal, A.A. Maudsley, H.E. Simon, W.H. Perman, J. Bonn, M.E. Mawad, A.J. Silver, S.R. Ganti, P. Sane, I.C. Chien, Am. J. Neuroradiol. 4, 245–249 (1983)

    Google Scholar 

  2. B. Schmitt, S. Zbyn, D. Stelzeneder, V. Jellus, D. Paul, L. Lauer, P. Bachert, S. Trattnig, Radiology 260(1), 257–264 (2011)

    Article  Google Scholar 

  3. M. Alecci, S. Romanzett, J. Kaffanke, A. Celik, H.P. Wegener, N.J. Shah, J. Magn. Reson. 181(2), 203–211 (2006)

    Article  ADS  Google Scholar 

  4. F. Maggiorelli, G. Buonincontri, A. Retico, J.D. Kaggie, M.J. Graves, L. Biagi, G. Tiberi, M. Tosetti, in Proceedings of the 2017 International Symposium of the Applied Computational Electromagnetics Society (Florence, Italy, 26–30 March 2017), pp. 1–2

  5. U. Zavonello, M. Borsero, D. Giordano, L. Ziliberti, F. Maggiorelli, G. Tiberi, IEEE Trans. Instrum. Meas. 66(6), 1208–1216 (2017)

    Article  Google Scholar 

  6. A. Retico, R. Stara, M.E. Fantacci, A. Toncelli, A. Galante, T. M. Florio, M. Alecci, M. Cosottini, G. Astrea, R. Battini, G. Tiberi, M. Costagli, M. Tosetti, IEEE-MeMeA, CR 7145175, 74–78 (2015)

    Google Scholar 

  7. M. Fuentes, E. Weber, S. Wilson, B. Li, S. Crozier, in Proceedings of the 18th Annual Meeting of ISMRM (Stockholm, Sweden, 1–7 May 2010), p. 422

  8. M. Twieg, M.A. de Rooij, M.A. Griswold, IEEE Trans. Microwave Theory Tech 63(12), 4169–4177 (2015)

    Article  ADS  Google Scholar 

  9. R.H. Caverly, W.E. Doherty, R.D. Watkins, in Proceedings of the 2011 IEEE MTT-S International Microwave Symposium (Baltimore, MD, USA, 5–10 June 2011), pp. 1–4

  10. S. Ha, M.J. Hamamura, O. Nalcioglu, L. Tugan Muftuler, Phys. Med. Biol. 55, 2589–2600 (2010)

    Article  Google Scholar 

  11. W.E. Doherty Jr., R. Joos, The PIN Diode Circuit Designers’ Handbook (Microsemi Corporation, Watertown, MA, USA, 1998)

  12. H. Caverly, G. Hiller, IEEE Trans. Microwave Theory Tech 38(12), 1938–1943 (1990)

    Article  ADS  Google Scholar 

  13. S.B. Bulumulla, K.J. Park, E. Fiveland, J. Iannotti, F. Robb, in Proceedings of the 23rd Annual Meeting of International Society for Magnetic Resonance Imaging (Toronto, Canada, 30 May–5 June 2015), Abstract 1797

  14. S.B. Bulumulla, K.J. Park, E. Fiveland, J. Iannottil, F. Robb, Rev. Sci. Instrum. 88(2), 253 (2017)

    Article  Google Scholar 

  15. A. Maunder, M. Rao, F. Robb, J. M. Wild, Magn. Reson. Med. 80(4), 1746–1753 (2018)

    Article  Google Scholar 

  16. D. Spence, M. Aimi, in Proceedings of the 23rd Annual Meeting of International Society for Magnetic Resonance Imaging, (Toronto, Canada, 30 May-5 June 2015), Abstract 704

  17. C. Keimel, B. Claydon, L. Bo, J. Park, M.E. Valdes, IEEE Trans. Ind. Appl. 48, 1163–1169 (2012)

    Article  Google Scholar 

  18. G.M. Rebeiz, RF MEMS: Theory, Design, and Technology (John Wiley & Sons Inc, New York, 2013)

  19. J. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging (CRC Press, Boca Raton, 1998)

  20. G. Giovannetti, G. Valvano, G. Virgili, M. Giannoni, A. Flori, F. Frijia, D. De Marchi, V. Hartwig, L. Landini, G.D. Aquaro, A. Pingitore, Appl. Magn. Reson. 46(11), 1221–1238 (2015)

    Article  Google Scholar 

  21. D. Kaifez, E.J. Hwan, IEEE Trans. Microwave Theory Tech 32(7), 666–670 (1984)

    Article  ADS  Google Scholar 

  22. W.A. Edelstein, G.H. Glover, C.J. Hardy, R.W. Redington, Magn. Reson. Med. 3(4), 604–618 (1986)

    Article  Google Scholar 

  23. J. Mispelter, M. Lupu, A. Briguet, NMR Probeheads for Biophysical and Biomedical Experiments: Theorical Principles and Practical Guidilines, 2nd edn. (Imperial College Press, London, 2006)

  24. P. Smith, Electronic Applications of the Ssmith Chart, 2nd edn. (SciTech/Noble Publishing, Raleigh, 1995)

  25. C. Bowick, RF Circuit Design, 2nd edn. (Newnes, Matlock Bath, 2007)

  26. D.M. Pozar, Microwave Engineering, 4th edn. (John Wiley and Sons Inc, NewYork, 2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Maggiorelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggiorelli, F., Boskamp, E.B., Tiberi, G. et al. Double-Tuned Surface 1H–23Na Radio Frequency Coils at 7 T: Comparison of Three Decoupling Methods. Appl Magn Reson 50, 649–661 (2019). https://doi.org/10.1007/s00723-019-01116-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01116-w

Navigation