Skip to main content
Log in

Spin Diagnostics of Local Polytypic Composition of Silicon Carbide with Submicron Spatial Resolution

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A new diagnostic method for evaluation of the local polytypic composition of silicon carbide at room temperature is proposed using known and tabulated zero-field splitting values for spin color centers with S = 3/2 whose frequency parameters are in the megahertz range and depend on the specific polytype. The zero-field splitting values are recorded from the change in the photoluminescence in the near infrared, either under the optically detected magnetic resonance conditions or under the level anticrossing conditions of the spin centers. The proposed method can be used to identify silicon carbide known as carborundum in nature by recording optically induced radio frequency emission of spin color centers, including outer space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.G. Baranov, I.V. Il’in, E.N. Mokhov, M.V. Muzafarova, S.B. Orlinskii, J. Schmidt, JETP Lett. 82, 441 (2005)

    Article  ADS  Google Scholar 

  2. P.G. Baranov, A.P. Bundakova, I.V. Borovykh, S.B. Orlinskii, R. Zondervan, J. Schmidt, JETP Lett. 86, 202 (2007)

    Article  ADS  Google Scholar 

  3. J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van de Walle, D.D. Awschalom, Proc. Natl. Acad. Sci. USA 107, 8513 (2010)

    Article  ADS  Google Scholar 

  4. D. DiVincenzo, Nat. Mater. 9, 468 (2010)

    Article  ADS  Google Scholar 

  5. P.G. Baranov, A.P. Bundakova, A.A. Soltamova, S.B. Orlinskii, I.V. Borovykh, R. Zondervan, R. Verberk, J. Schmidt, Phys. Rev. B. 83, 125203 (2011)

    Article  ADS  Google Scholar 

  6. D. Riedel, F. Fuchs, H. Kraus, S. Vath, A. Sperlich, V. Dyakonov, A. Soltamova, P. Baranov, V. Ilyin, G.V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012)

    Article  ADS  Google Scholar 

  7. H. Kraus, V.A. Soltamov, F. Fuchs, D. Simin, A. Sperlich, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Sci. Rep. 4, 5303 (2014)

    Article  ADS  Google Scholar 

  8. H. Kraus, V.A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P.G. Baranov, V. Dyakonov, G.V. Astakhov, Nat. Phys. 10, 157 (2014)

    Article  Google Scholar 

  9. D. Simin, V.A. Soltamov, A.V. Poshakinskiy, A.N. Anisimov, R.A. Babunts, D.O. Tolmachev, E.N. Mokhov, M. Trupke, S.A. Tarasenko, A. Sperlich, P.G. Baranov, V. Dyakonov, G.V. Astakhov, Phys. Rev. X. 6, 031014 (2016)

    Google Scholar 

  10. M. Widmann, S.-Y. Lee, T. Rendler, N.T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. Ali Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, J. Wrachtrup, Nat. Mater. 14, 164 (2015)

    Article  ADS  Google Scholar 

  11. D.J. Christle, A.L. Falk, P. Andrich, P.V. Klimov, J.U. Hassan, N.T. Son, E. Janzén, T. Ohshima, D.D. Awschalom, Nat. Mater. 14, 160 (2015)

    Article  ADS  Google Scholar 

  12. A.N. Anisimov, D. Simin, V.A. Soltamov, S.P. Lebedev, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Sci. Rep. 6, 33301 (2016)

    Article  ADS  Google Scholar 

  13. V.A. Soltamov, B.V. Yavkin, D.O. Tolmachev, R.A. Babunts, A.G. Badalyan, VYu. Davydov, E.N. Mokhov, I.I. Proskuryakov, S.B. Orlinskii, P.G. Baranov, Phys. Rev. Lett. 115, 247602 (2015)

    Article  ADS  Google Scholar 

  14. G.V. Astakhov, D. Simin, V. Dyakonov, B.V. Yavkin, S.B. Orlinskii, I.I. Proskuryakov, A.N. Anisimov, V.A. Soltamov, P.G. Baranov, Appl. Magn. Reson. 47, 793 (2016)

    Article  Google Scholar 

  15. A.N. Anisimov, V.A. Soltamov, E.N. Mokhov, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Appl. Magn. Reson. 49, 85 (2018)

    Article  Google Scholar 

  16. P.G. Baranov, H.J. von Bardeleben, F. Jelezko, J. Wrachtrup, Magnetic Resonance of Semiconductors and their Nanostructures: Basic and Advanced Applications: Springer Series in Materials Science, vol. 253 (Springer, Berlin, 2017)

    Google Scholar 

  17. H.J. von Bardeleben, J.L. Cantin, E. Rauls, U. Gerstmann, Phys. Rev. B. 92, 064104 (2015)

    Article  ADS  Google Scholar 

  18. H.J. von Bardeleben, J.L. Cantin, A. Csóré, A. Gali, E. Rauls, U. Gerstmann, Phys. Rev. B 94, 121202 (2016)

    Article  ADS  Google Scholar 

  19. S.G. Carter, Ö.O. Soykal, P. Dev, S.E. Economou, E.R. Glaser, Phys. Rev. B. 92, 161202 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation under grant no. 16-42-01098; Russian Foundation for Basic Research under grant no. 16-02-00877-a and by the Program of the Presidium of the Russian Academy of Sciences. V.A.S. acknowledges support through a sponsorship provided by the Alexander von Humboldt (AvH) foundation fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Anisimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, A.N., Nagalyuk, S.S., Muzafarova, M.V. et al. Spin Diagnostics of Local Polytypic Composition of Silicon Carbide with Submicron Spatial Resolution. Appl Magn Reson 50, 323–331 (2019). https://doi.org/10.1007/s00723-018-1069-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1069-z

Navigation