Skip to main content
Log in

Spin Centres in SiC for Quantum Technologies

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Atomic-scale colour centres in bulk and nanocrystalline SiC are promising for quantum information processing, photonics and sensing at ambient conditions. Their spin state can be initialized, manipulated and readout by means of optically detected magnetic resonance. It has been shown that there are at least two families of colour centres in SiC with S = 1 and S = 3/2, which have the property of optical alignment of the spin levels and allows a spin manipulation. The ground state and the excited state were demonstrated to have spin S = 3/2 and a population inversion in the ground state can be generated using optical pumping, leading to stimulated microwave emission even at room temperature. By controlling the neutron irradiation fluence, the colour centres concentration can be varied over several orders of magnitude down to a single defect level. Several, separately addressable spin centres have been identified in the same crystal for each polytype, which can be used either for magnetic field or temperature sensing. Some of these spin centres are characterised by nearly temperature independent zero-field splitting, making these centres very attractive for vector magnetometry. Contrarily, the zero-field splitting of the centres in the excited state exhibits a giant thermal shift, which can be used for thermometry applications. Finally coherent manipulation of spin states has been performed at room temperature and even at temperatures higher by hundreds of degrees. SiC is taking on a new role as a flexible and practical platform for harnessing the new quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Science 276, 2012–2014 (1997)

    Article  Google Scholar 

  2. F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup, A. Nizovtsev, S. Kilin, Appl. Phys. Lett. 81, 2160–2162 (2002)

    Article  ADS  Google Scholar 

  3. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 92, 076401 (2004)

    Article  ADS  Google Scholar 

  4. F. Jelezko, J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006)

    Article  ADS  Google Scholar 

  5. D.D. Awschalom, M.E. Flatté, Nature Phys. 3, 153–159 (2007)

    Article  ADS  Google Scholar 

  6. R. Hanson, D.D. Awschalom, Nature 453, 1043–1049 (2008)

    Article  ADS  Google Scholar 

  7. P.M. Koenraad, M.E. Flatté, Nat. Mater. 10, 91 (2011)

    Article  ADS  Google Scholar 

  8. P.G. Baranov, I.V. Il’in, E.N. Mokhov, M.V. Muzafarova, S.B. Orlinskii, J. Schmidt, JETP Lett. 82, 441–443 (2005)

    Article  ADS  Google Scholar 

  9. P.G. Baranov, A.P. Bundakova, I.V. Borovykh, S.B. Orlinskii, R. Zondervan, J. Schmidt, J. Exp. Theor. Phys. Lett. 86, 202–206 (2007)

    Article  Google Scholar 

  10. J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van de Walle, D.D. Awschalom, Proc. Natl. Acad. Sci. USA 107, 8513–8518 (2010)

    Article  ADS  Google Scholar 

  11. D. DiVincenzo, Nature Mat. 9, 468 (2010)

    Article  ADS  Google Scholar 

  12. P.G. Baranov, A.P. Bundakova, A.A. Soltamova, S.B. Orlinskii, I.V. Borovykh, R. Zondervan, R. Verberk, J. Schmidt, Phys. Rev. B 83, 125203 (2011)

    Article  ADS  Google Scholar 

  13. A.G. Smart, Phys. Today 65, 10 (2012)

    Article  ADS  Google Scholar 

  14. A.I. Veinger, V.A. Il’in, Yu.M. Tairov, V.F. Tsvetkov, Soviet Physics: Semicond. 13, 1385 (1979);

  15. V.S. Vainer and V.A. Il’in, Soviet Physics: Solid State 23, 2126 (1981)

  16. H.J. von Bardeleben, J.L. Cantin, I. Vickridge, G. Battistig, Phys. Rev. B 62, 10126 (2000)

    Article  Google Scholar 

  17. H.J. von Bardeleben, J. Cantin, L. Henry, M. Barthe, Phys. Rev. B 62, 10841 (2000)

    Article  Google Scholar 

  18. M. Wagner, B. Magnusson, W.M. Chen, E. Janzen, E. Sörman, C. Hallin, J.L. Lindström, Phys. Rev. B 62, 16555 (2000)

    Article  ADS  Google Scholar 

  19. N. Mizuochi, S. Yamasaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, J. Isoya, Phys. Rev. B 66, 235202 (2002)

    Article  ADS  Google Scholar 

  20. W.E. Carlos, N.Y. Garces, E.R. Glaser, M.A. Fanton, Phys. Rev. B 74, 235201 (2006)

    Article  ADS  Google Scholar 

  21. S.B. Orlinski, J. Schmidt, E.N. Mokhov, P.G. Baranov, Phys. Rev. B 67, 125207 (2003)

    Article  ADS  Google Scholar 

  22. W.F. Koehl, B.B. Buckley, F.J. Heremans, G. Calusine, D.D. Awschalom, Nature 479, 84–87 (2011)

    Article  ADS  Google Scholar 

  23. V.A. Soltamov, A.A. Soltamova, P.G. Baranov, I.I. Proskuryakov, Phys. Rev. Lett. 108, 226402 (2012)

    Article  ADS  Google Scholar 

  24. D. Riedel, F. Fuchs, H. Kraus, S. Vath, A. Sperlich, V. Dyakonov, A. Soltamova, P. Baranov, V. Ilyin, G.V. Astakhov, Resonant addressing and manipulation of silicon vacancy Qubits in Silicon Carbide. Phys. Rev. Lett. 109, 226402 (2012)

    Article  ADS  Google Scholar 

  25. F. Fuchs, V.A. Soltamov, S. Vath, P.G. Baranov, E.N. Mokhov, G.V. Astakhov, V. Dyakonov, Sci. Reports 3, 1637 (2013)

    ADS  Google Scholar 

  26. S. Castelletto, B.C. Johnson, A. Boretti, Adv. Opt. Mater. 1, 609–625 (2013)

    Article  Google Scholar 

  27. A.L. Falk, B.B. Buckley, G. Calusine, W.F. Koehl, V.V. Dobrovitski, A. Politi, C.A. Zorman, P.X.L. Feng, D.D. Awschalom, Nat. Comm. 4, 1819 (2013)

    Article  ADS  Google Scholar 

  28. S. Castelletto, B.C. Johnson, V. Ivady, N. Stavrias, T. Umeda, A. Gali, T. Ohshima, Nat. Mater. 13, 151–156 (2013)

    Article  ADS  Google Scholar 

  29. T.C. Hain, F. Fuchs, V.A. Soltamov, P.G. Baranov, G.V. Astakhov, T. Hertel, V. Dyakonov, J. Appl. Phys. 115, 133508 (2014)

    Article  ADS  Google Scholar 

  30. S. Castelletto, B.C. Johnson, C. Zachreson, D. Beke, I. Balogh, T. Ohshima, I. Aharonovich, A. Gali, ACS Nano 8, 7938–7947 (2014)

    Article  Google Scholar 

  31. A. Muzha, F. Fuchs, N.V. Tarakina, D. Simin, M. Trupke, V.A. Soltamov, E.N. Mokhov, P.G. Baranov, V. Dyakonov, A. Krueger, G.V. Astakhov, Appl. Phys. Lett. 105, 243112 (2014)

    Article  ADS  Google Scholar 

  32. H. Kraus, V.A. Soltamov, D. Riedel, S. Vath, F. Fuchs, A. Sperlich, P.G. Baranov, V. Dyakonov, G.V. Astakhov, Nat. Phys. 10, 157–162 (2014)

    Article  Google Scholar 

  33. G. Calusine, A. Politi, D. D. Awschalom, Appl. Phys. Lett. 105, 011123 (2014)

    Article  ADS  Google Scholar 

  34. P.V. Klimov, A.L. Falk, B.B. Buckley, D.D. Awschalom, Phys. Rev. Lett. 112, 087601 (2014)

    Article  ADS  Google Scholar 

  35. A.L. Falk, P.V. Klimov, B.B. Buckley, V. Ivady, I.A. Abrikosov, G. Calusine, W.F. Koehl, A. Gali, D.D. Awschalom, Phys. Rev. Lett. 112, 187601 (2014)

    Article  ADS  Google Scholar 

  36. H. Kraus, V.A. Soltamov, F. Fuchs, D. Simin, A. Sperlich, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Sci. Reports 4, 5303 (2014)

    ADS  Google Scholar 

  37. Li-Ping Yang, C. Burk, M. Widmann, Sang-Yun Lee, J. Wrachtrup, Nan Zhao, Phys. Rev. B 90, 241203 (2014)

    Article  ADS  Google Scholar 

  38. V.A. Soltamov, B.V. Yavkin, D.O. Tolmachev, R.A. Babunts, A.G. Badalyan, VYu. Davydov, E.N. Mokhov, I.I. Proskuryakov, S.B. Orlinskii, P.G. Baranov, Phys. Rev. Lett. 115, 247602 (2015)

    Article  ADS  Google Scholar 

  39. O.V. Zwier, D. O’Shea, A.R. Onur, C.H. van der Wal, Sci. Reports 5, 10931 (2015)

    Article  ADS  Google Scholar 

  40. A.L. Falk, P.V. Klimov, V. Ivady, K. Szasz, D.J. Christle, W.F. Koehl, A. Gali, D.D. Awschalom, Phys. Rev. Lett. 114, 247603 (2015)

    Article  ADS  Google Scholar 

  41. S.G. Carter, O.O. Soykal, P. Dev, S.E. Economou, E.R. Glaser, Phys. Rev. B 92, 161202 (2015)

    Article  ADS  Google Scholar 

  42. D. Simin, F. Fuchs, H. Kraus, A. Sperlich, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Phys. Rev. Appl. 4, 014009 (2015)

    Article  ADS  Google Scholar 

  43. S.-Y. Lee, M. Niethammer, J. Wrachtrup, Phys. Rev. B. 92, 115201 (2015)

    Article  ADS  Google Scholar 

  44. D.J. Christle, A.L. Falk, P. Andrich, P.V. Klimov, J. ul Hassan, N.T Son, E. Janzen, T. Ohshima, D.D. Awschalom, Nat. Mater. 14, 160–163 (2015)

    Article  ADS  Google Scholar 

  45. M. Widmann, Sang-Yun Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, Li-Ping Yang, Nan Zhao, Sen Yang, I. Booker, A. Denisenko, M. Jamali, S. Ali Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, J. Wrachtrup, Nat. Mater. 14, 164–168 (2015)

    Article  Google Scholar 

  46. F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Paum, V. Dyakonov, G.V. Astakhov, Nature. Comm. 6, 7578 (2015)

    Article  ADS  Google Scholar 

  47. A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T.J. Karle, A. Gali, S. Prawer, J.C. McCallum, B.C. Johnson, Nat. Comm. 6, 7783 (2015)

    Article  ADS  Google Scholar 

  48. T. Wimbauer, B.K. Meyer, A. Hofstaetter, A. Scharmann, H. Overhof, Phys. Rev. B 56, 7384 (1997)

    Article  ADS  Google Scholar 

  49. W.B. Mims, in Electron Paramagnetic Resonance, ed. S. Geschwind (Plenum, New York, 1972), pp. 344–348.

  50. J.-M. Spaeth, J.R. Niklas, R.H. Bartram, Structural Analysis of Point Defects in Solids (Springer-Verlag, Berlin, Heidelberg, 1992), Chap. 5, p. 152

  51. A.J. Freeman, R.B. Frankel, Hyperfine Interactions (Academic Press, New York, London, 1967)

    Google Scholar 

  52. A. Abraham, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970), p. 702

    Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Scientific Foundation, Agreement No. 14-12-00859 and by the Russian Foundation for Basic Research (project no. 16-02-00877). We are grateful to the Dr. G.V. Mamin for his help in part of EPR experiments and furtive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Soltamov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhov, G.V., Simin, D., Dyakonov, V. et al. Spin Centres in SiC for Quantum Technologies. Appl Magn Reson 47, 793–812 (2016). https://doi.org/10.1007/s00723-016-0800-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0800-x

Keywords

Navigation