Applied Magnetic Resonance

, Volume 49, Issue 8, pp 881–892 | Cite as

Irradiation of Phenolic Compounds with Ultraviolet Light Causes Release of Hydrated Electrons

  • Shoko Okazaki
  • Keizo Takeshita
Original Paper


Phenolic compounds are widely used for a number of purposes, including medical drugs, cosmetics, food additives, and supplementary foods, and are often exposed to the ultraviolet (UV) rays of the sun. We herein examined free radicals produced from phenolic compounds by UV irradiation using an electron paramagnetic resonance (ESR)-spin trapping technique with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signals of DMPO adducts of the hydrogen radical (DMPO–H) and hydroxyl radical were detected following the UV irradiation of polyhydric phenols, such as hydroquinone, catechol, resorcinol, pyrogallol, and methyl gallate, in an aqueous solution. Radical adducts were not detected in monohydric phenols, such as phenol and methylparaben. The signal intensity of DMPO–H became stronger as the concentration of phenolic compounds increased. The signal intensity of DMPO–H decreased when the solution in which air was replaced with N2O, a scavenger of hydrated electrons, was irradiated. However, sodium formate, a scavenger of the hydrogen radical, did not affect the signal intensity of DMPO–H. The signal intensity of DMPO–H became stronger as the pH of the solution increased. Semiquinone-type radicals increased following the UV irradiation of solutions of polyhydric phenols in the absence of DMPO. These results indicate that hydrated electrons are generated by the UV irradiation of polyhydric phenols, and that phenoxide ions are responsible for the production of hydrated electrons.



We thank our student, Ms. Tomomi Sato, for her excellent technical assistance with the experiments.


  1. 1.
    M. Chandra, J. Levitt, C.A. Pensabene, Acta Derm. Venereol. 92, 232–235 (2012)CrossRefGoogle Scholar
  2. 2.
    B. Sofen, G. Prado, J. Emer, Skin Therapy Lett. 21, 1–7 (2016)Google Scholar
  3. 3.
    M. Lartey, F.D. Krampa, M. Abdul-rahman, N.L. Quarcoo, P. Yamson, P.G. Hagan, Y. Tettey, R. Gyasi, A.A. Adjei, Int. J. Dermatol. 56, 32–39 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Soni, S.L. Taylor, N. Greenberg, G. Burdock, Food Chem. Toxicol. 40, 1335–1373 (2002)CrossRefGoogle Scholar
  5. 5.
    Z.E. Holcomb, M.G. Van Noord, A.R. Atwater, Dermatitis 28, 115–127 (2017)CrossRefGoogle Scholar
  6. 6.
    F. Shahidi, Food/Nahrung 44, 158–163 (2000)CrossRefGoogle Scholar
  7. 7.
    C.T. Jung, R.R. Wickett, P.B. Desai, R.L. Bronaugh, Food Chem. Toxicol. 41, 885–895 (2003)CrossRefGoogle Scholar
  8. 8.
    B.L. Van Duuren, J. Environ. Pathol. Toxicol. 3, 237–251 (1980)Google Scholar
  9. 9.
    K. Hirakawa, S. Oikawa, Y. Hiraku, I. Hirosawa, S. Kawanishi, Chem. Res. Toxicol. 15, 76–82 (2002)CrossRefGoogle Scholar
  10. 10.
    C. Nishizawa, K. Takeshita, J. Ueda, I. Nakanishi, K.T. Suzuki, T. Ozawa, Free Rad. Res. 40, 233–240 (2006)CrossRefGoogle Scholar
  11. 11.
    G.R. Buettner, Free Radic. Biol. Med. 3, 259–303 (1987)CrossRefGoogle Scholar
  12. 12.
    K. Takeshita, K. Fujii, K. Anzai, T. Ozawa, Free Radic. Biol. Med. 36, 1134–1143 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Takeshita, C.A. Olea-Azar, M. Mizuno, T. Ozawa, Antioxid. Redox Signal. 2, 355–362 (2000)CrossRefGoogle Scholar
  14. 14.
    K. Taguchi, K. Yamasaki, H. Maesaki, M. Tokuno, S. Okazaki, H. Moriuchi, K. Takeshita, M. Otagiri, H. Seo, Nat. Prod. Res. 28, 2211–2213 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Nishizawa, K. Takeshita, J. Ueda, M. Mizuno, K.T. Suzuki, T. Ozawa, Free Rad. Res. 38, 385–392 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Ueda, K. Takeshita, S. Matsumoto, K. Yazaki, M. Kawaguchi, T. Ozawa, Photochem. Photobiol. 77, 165–170 (2003)CrossRefGoogle Scholar
  17. 17.
    G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513–886 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Song, G.R. Buettner, Free Radic. Biol. Med. 49, 919–962 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Suresh, V.C. Srivastava, I.M. Mishra, Int. J. Energy Environ. Eng. 3, 1–19 (2012)CrossRefGoogle Scholar
  20. 20.
    E.A. Pillar, M.I. Guzman, Environ. Sci. Technol. 51, 4951–4959 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    S. Nakagawa, Anal. Sci. 29, 377–380 (2013)CrossRefGoogle Scholar
  22. 22.
    T.A. Enache, A.M. Oliveira-Brett, J. Electroanal. Chem. 655, 9–16 (2011)CrossRefGoogle Scholar
  23. 23.
    B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed. (Oxford University Press, New York, 1999)Google Scholar
  24. 24.
    S. Okazaki, M.A. Mannan, K. Sawai, T. Masumizu, Y. Miura, K. Takeshita, Free Rad. Res. 41, 1069–1077 (2007)CrossRefGoogle Scholar
  25. 25.
    K. Sakurai, H. Sasabe, T. Koga, T. Konishi, Free Rad. Res. 38, 487–494 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Analytical Chemistry, Faculty of Pharmaceutical SciencesSojo UniversityKumamotoJapan

Personalised recommendations