Skip to main content
Log in

Irradiation of Phenolic Compounds with Ultraviolet Light Causes Release of Hydrated Electrons

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Phenolic compounds are widely used for a number of purposes, including medical drugs, cosmetics, food additives, and supplementary foods, and are often exposed to the ultraviolet (UV) rays of the sun. We herein examined free radicals produced from phenolic compounds by UV irradiation using an electron paramagnetic resonance (ESR)-spin trapping technique with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signals of DMPO adducts of the hydrogen radical (DMPO–H) and hydroxyl radical were detected following the UV irradiation of polyhydric phenols, such as hydroquinone, catechol, resorcinol, pyrogallol, and methyl gallate, in an aqueous solution. Radical adducts were not detected in monohydric phenols, such as phenol and methylparaben. The signal intensity of DMPO–H became stronger as the concentration of phenolic compounds increased. The signal intensity of DMPO–H decreased when the solution in which air was replaced with N2O, a scavenger of hydrated electrons, was irradiated. However, sodium formate, a scavenger of the hydrogen radical, did not affect the signal intensity of DMPO–H. The signal intensity of DMPO–H became stronger as the pH of the solution increased. Semiquinone-type radicals increased following the UV irradiation of solutions of polyhydric phenols in the absence of DMPO. These results indicate that hydrated electrons are generated by the UV irradiation of polyhydric phenols, and that phenoxide ions are responsible for the production of hydrated electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Chandra, J. Levitt, C.A. Pensabene, Acta Derm. Venereol. 92, 232–235 (2012)

    Article  Google Scholar 

  2. B. Sofen, G. Prado, J. Emer, Skin Therapy Lett. 21, 1–7 (2016)

    Google Scholar 

  3. M. Lartey, F.D. Krampa, M. Abdul-rahman, N.L. Quarcoo, P. Yamson, P.G. Hagan, Y. Tettey, R. Gyasi, A.A. Adjei, Int. J. Dermatol. 56, 32–39 (2017)

    Article  Google Scholar 

  4. M. Soni, S.L. Taylor, N. Greenberg, G. Burdock, Food Chem. Toxicol. 40, 1335–1373 (2002)

    Article  Google Scholar 

  5. Z.E. Holcomb, M.G. Van Noord, A.R. Atwater, Dermatitis 28, 115–127 (2017)

    Article  Google Scholar 

  6. F. Shahidi, Food/Nahrung 44, 158–163 (2000)

    Article  Google Scholar 

  7. C.T. Jung, R.R. Wickett, P.B. Desai, R.L. Bronaugh, Food Chem. Toxicol. 41, 885–895 (2003)

    Article  Google Scholar 

  8. B.L. Van Duuren, J. Environ. Pathol. Toxicol. 3, 237–251 (1980)

    Google Scholar 

  9. K. Hirakawa, S. Oikawa, Y. Hiraku, I. Hirosawa, S. Kawanishi, Chem. Res. Toxicol. 15, 76–82 (2002)

    Article  Google Scholar 

  10. C. Nishizawa, K. Takeshita, J. Ueda, I. Nakanishi, K.T. Suzuki, T. Ozawa, Free Rad. Res. 40, 233–240 (2006)

    Article  Google Scholar 

  11. G.R. Buettner, Free Radic. Biol. Med. 3, 259–303 (1987)

    Article  Google Scholar 

  12. K. Takeshita, K. Fujii, K. Anzai, T. Ozawa, Free Radic. Biol. Med. 36, 1134–1143 (2004)

    Article  Google Scholar 

  13. K. Takeshita, C.A. Olea-Azar, M. Mizuno, T. Ozawa, Antioxid. Redox Signal. 2, 355–362 (2000)

    Article  Google Scholar 

  14. K. Taguchi, K. Yamasaki, H. Maesaki, M. Tokuno, S. Okazaki, H. Moriuchi, K. Takeshita, M. Otagiri, H. Seo, Nat. Prod. Res. 28, 2211–2213 (2014)

    Article  Google Scholar 

  15. C. Nishizawa, K. Takeshita, J. Ueda, M. Mizuno, K.T. Suzuki, T. Ozawa, Free Rad. Res. 38, 385–392 (2004)

    Article  Google Scholar 

  16. J. Ueda, K. Takeshita, S. Matsumoto, K. Yazaki, M. Kawaguchi, T. Ozawa, Photochem. Photobiol. 77, 165–170 (2003)

    Article  Google Scholar 

  17. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513–886 (1988)

    Article  ADS  Google Scholar 

  18. Y. Song, G.R. Buettner, Free Radic. Biol. Med. 49, 919–962 (2010)

    Article  Google Scholar 

  19. S. Suresh, V.C. Srivastava, I.M. Mishra, Int. J. Energy Environ. Eng. 3, 1–19 (2012)

    Article  Google Scholar 

  20. E.A. Pillar, M.I. Guzman, Environ. Sci. Technol. 51, 4951–4959 (2017)

    Article  ADS  Google Scholar 

  21. S. Nakagawa, Anal. Sci. 29, 377–380 (2013)

    Article  Google Scholar 

  22. T.A. Enache, A.M. Oliveira-Brett, J. Electroanal. Chem. 655, 9–16 (2011)

    Article  Google Scholar 

  23. B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed. (Oxford University Press, New York, 1999)

  24. S. Okazaki, M.A. Mannan, K. Sawai, T. Masumizu, Y. Miura, K. Takeshita, Free Rad. Res. 41, 1069–1077 (2007)

    Article  Google Scholar 

  25. K. Sakurai, H. Sasabe, T. Koga, T. Konishi, Free Rad. Res. 38, 487–494 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank our student, Ms. Tomomi Sato, for her excellent technical assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keizo Takeshita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okazaki, S., Takeshita, K. Irradiation of Phenolic Compounds with Ultraviolet Light Causes Release of Hydrated Electrons. Appl Magn Reson 49, 881–892 (2018). https://doi.org/10.1007/s00723-018-0999-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-0999-9

Navigation