Skip to main content
Log in

Effect of Structural Disorder on Hydrodynamic Behavior of Alpha-Casein According to PFG NMR Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The concentration dependences of self-diffusion coefficient for intrinsically disordered milk protein αS-casein were studied by pulsed field gradient nuclear magnetic resonance. The experimental data were analyzed in a view of phenomenological approach based on the frictional formalism of non-equilibrium thermodynamics by Vink. The results of αS-CN hydrodynamic study showed that at low- and high-protein concentrations, αS-CN exists in the different structural forms. At low concentrations in the rather broad concentration range, protein remains monomeric but with greater hydrodynamic size than have rigid globular proteins of the equal mass. At high concentrations beyond the definite protein content, αS-CN tends to form associates. The application of the Vink’s approach to αS-CN testifies that the role of flexible domains in the process of self-diffusion is mainly in increasing the friction of between αS-CN molecules due to their inter-entanglement. The latter physically means that when αS-CN molecules cling each other by their flexible domains, this phenomenon provides much more efficient friction than their interaction with solvent molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.N. Uversky, Chem. Rev. 114, 6557 (2014)

    Article  Google Scholar 

  2. J. Habchi, P. Tompa, S. Longhi, V.N. Uversky, Chem. Rev. 114, 6561 (2014)

    Article  Google Scholar 

  3. R. van der Lee, M. Buljan, B. Lang, R.J. Weatheritt, G.W. Daughdrill, A.K. Dunker, M. Fuxreiter, J. Gough, J. Gsponer, D.T. Jones, P.M. Kim, R.W. Kriwacki, C.J. Oldfield, R.V. Pappu, P. Tompa, V.N. Uversky, P.E. Wright, M.M. Babu, Chem. Rev. 114, 6589 (2014)

    Article  Google Scholar 

  4. S. De Forte, V.N. Uversky, Disordered Proteins (Wiley, Chichester, 2016)

    Google Scholar 

  5. V.N. Uversky, Intrins. Disord. Prot. 5, e1355205 (2017). http://www.tandfonline.com/doi/full/10.1080/21690707.2017.1355205

  6. P. Walstra, J. Dairy Sci. 73, 1965 (1990)

    Article  Google Scholar 

  7. E.M. Redwan, B. Xue, H.A. Almehdar, V.N. Uversky, Curr. Prot. Pept. Sci. 16, 228 (2015)

    Article  Google Scholar 

  8. C. Holt, D.S. Horne, Neth. Milk Dairy J. 50, 85 (1996)

    Google Scholar 

  9. D.S. Horne, Int. Dairy J. 8, 171 (1998)

    Article  Google Scholar 

  10. P. Walstra, Int. Dairy J. 9, 189 (1999)

    Article  Google Scholar 

  11. D.G. Schmidt, T.A.J. Payens, J. Coll. Interface Sci. 39, 655 (1972)

    Article  ADS  Google Scholar 

  12. E. Leclerc, P. Calmettes, Phys. B 241–243, 1141 (1998)

    Google Scholar 

  13. Yu.F. Zuev, D.A. Faizullin, B.Z. Idiyatullin, F.K. Mukhitova, J.-M. Chobert, V.D. Fedotov, T. Haertlé, Coll. Polym. Sci. 282, 264 (2004)

    Article  Google Scholar 

  14. S. Gangnard, Yu.F. Zuev, J.-C. Gaudin, V.D. Fedotov, Y. Choiset, M.A.V. Axelos, J.-M. Chobert, Th. Haertlé, Food Hydrocolloids 21, 180 (2007)

    Article  Google Scholar 

  15. T.A. Konnova, D.A. Faizullin, Yu.F. Zuev, T. Haertlé, Doklady Biochem. Biophys. 448, 36 (2013)

    Article  Google Scholar 

  16. D.A. Faizullin, T.A. Konnova, T. Haertlé, Yu.F. Zuev, Russ. J. Bioorg. Chem. 39, 366 (2013)

    Article  Google Scholar 

  17. D.A. Faizullin, T.A. Konnova, T. Haertlé, Yu.F. Zuev, Food Hydrocoll. 63, 349 (2017)

    Article  Google Scholar 

  18. H.M. Farrell Jr., R. Jimenez-Flores, G.T. Bleck, E.M. Brown, J.E. Butler, L.K. Creamer, C.L. Hicks, C.M. Hollar, K.F. Ng-Kwai-Hang, H.E. Swaisgood, J. Dairy Sci. 87, 1641 (2004)

    Article  Google Scholar 

  19. J.-C. Mercier, F. Grosclaude, B. Ribadeau-Dumas, Eur. J. Biochem. 23, 41 (1971)

    Article  Google Scholar 

  20. F. Grosclaude, M.F. Mahé, B. Ribadeau-Dumas, Eur. J. Biochem. 40, 323 (1973)

    Article  Google Scholar 

  21. M.H. Alaimo, H.M. Farrell Jr., M.W. Germann, Biochem. Biophys. Acta. 1431, 410 (1999)

    Google Scholar 

  22. H.M. Farrell Jr., E.L. Malin, E.M. Brown, P.X. Qi, Curr. Opin. Coll. Interface Sci. 11, 135 (2006)

    Article  Google Scholar 

  23. D.S. Horne, Curr. Opin. Coll. Interface Sci. 7, 456 (2002)

    Article  Google Scholar 

  24. H.E. Swaisgood, Proteins, in Advanced Dairy Chemistry. Vol. 1, 3rd edn., ed. by P.F. Fox, P.L.H. McSweeny (Kluwer Publishers, New York, 2003), pp. 138–201

    Google Scholar 

  25. A. Thurn, W. Buchard, R. Niki, Colloid Polym. Sci. 265, 653 (1987)

    Article  Google Scholar 

  26. N.L. Zakharchenko, T.A. Konnova, N.E. Gogoleva, D.A. Faizullin, Yu.F. Zuev, T. Haertlé, Russ. J. Bioorg. Chem. 38, 192 (2012)

    Article  Google Scholar 

  27. J. Schiller, L. Naji, R. Trampel, W. Ngwa, R. Knauss, K. Arnold, in Cartilage and Osteoarthritis, Methods in Molecular Medicine, vol. 2., ed. by F. De Ceuninck, M. Sabatini, P. Pastoureau (Humana Press, New York City, 2004), pp. 287–302

  28. K.I. Momot, P.W. Kuchel, Concepts Magn. Reson. Part A 28, 249 (2006)

    Article  Google Scholar 

  29. B.P. Chekal, J. M. Torkelson, Macromolecules 35, 8126 (2002)

    Article  ADS  Google Scholar 

  30. C.L. Cooper, T. Cosgrove, J.S. van Duijneveldt, M. Murray, S.W. Prescott, Soft Matter 9, 7211 (2013)

    Article  ADS  Google Scholar 

  31. S. Barhoum, A. Yethiraj, J. Phys. Chem. B. 114, 17062 (2010)

    Article  Google Scholar 

  32. P. Mereghetti, R.R. Gabdoulline, R.C. Wade, Biophys. J. 99, 3782 (2010)

    Article  ADS  Google Scholar 

  33. P. Bernado, T.J. Garcı, M. Pons, J. Mol. Recogn. 17, 397 (2004)

    Article  Google Scholar 

  34. A.M. Kusova, A.E. Sitnitsky, B.Z. Idiyatullin, D.R. Bakirova, Yu.F. Zuev, Appl. Magn. Reson. 49, 35 (2018)

    Article  Google Scholar 

  35. H. Vink, J. Chem. Soc. Faraday Trans. I 81, 1725 (1985)

    Article  Google Scholar 

  36. A.E. Post, B. Arnold, J. Weiss, J. Hinrichs, J. Dairy Sci. 95, 1603 (2012)

    Article  Google Scholar 

  37. M.P. Thompson, C.A. Kiddy, J. Dairy Sci. 47, 626 (1964)

    Article  Google Scholar 

  38. D.H. Wu, A.D. Chen, C.S. Johnson, J. Magn. Reson. Ser. A. 115, 260 (1995)

    Article  ADS  Google Scholar 

  39. D.L. Melnikova, V.D. Skirda, I.V. Nesmelova, J. Phys. Chem. B. 120, 10192 (2017)

    Google Scholar 

  40. B.C. Schultz, V.A. Bloomfield, Arch. Biochem. Biophys. 173, 18 (1976)

    Article  Google Scholar 

  41. H.E. Swaisgood, S.N. Timasheff, Arch. Biochem. Biophys. 126, 344 (1968)

    Article  Google Scholar 

  42. D.C. Thorn, H. Ecroyd, M. Sunde, S. Poon, J.C. Carver, Biochemistry 47, 3926 (2008)

    Article  Google Scholar 

  43. J.T. Padding, Theory of Polymer Dynamics (University of Cambridge, UK, 2005)

    Google Scholar 

  44. D.G. Schmidt, T.A.J. Payens, B.W. van Markwijk, J.A. Brinkhuis, Biochem. Biophys. Res. Commun. 27, 448 (1967)

    Article  Google Scholar 

  45. S.J. Perkins, Eur. J. Biochem. 157, 169 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in the framework of State Assignment (project no. 0217-2018-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Zuev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusova, A.M., Sitnitsky, A.E. & Zuev, Y.F. Effect of Structural Disorder on Hydrodynamic Behavior of Alpha-Casein According to PFG NMR Spectroscopy. Appl Magn Reson 49, 499–509 (2018). https://doi.org/10.1007/s00723-018-0990-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-0990-5

Navigation