Skip to main content
Log in

The Effect of Shape and Concentration on Translational Diffusion of Proteins Measured by PFG NMR

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The concentration dependences of self-diffusion coefficient for irregular-shaped fibrinogen, for globular, spheroidal trypsin and α-chymotrypsin were studied by pulsed field gradient nuclear magnetic resonance. The experimental data were analyzed in a view of two known theoretical approaches—the hydrodynamic model of rigid spheres by Tokuyama and Oppenheim and the phenomenological approach based on the frictional formalism of non-equilibrium thermodynamics by Vink. The detailed discussion of their merits and drawbacks is presented. Our results testify that the Vink’s approach is quite universal, providing a satisfactory description of experimental data for proteins of complicated structure and different shape while the model of Tokuyama and Oppenheim is applicable only to proteins of more regular shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Liu, B. Chu, in Encyclopedia of Surface and Colloid Science, ed. by A.T. Hubbard (Marcel Dekker, New York, 2002), p. 3023

    Google Scholar 

  2. D. Lavalett, M.A. Hink, M. Tourbez, C. Tétreau, A.J. Visser, Eur. Biophys. J. 35, 517 (2006)

    Article  Google Scholar 

  3. M.C.L. Martinez, V. Rodes, J. Garcia de la Torre, Int. J. Biol. Macromol. 6, 261 (1984)

    Article  Google Scholar 

  4. W.S. Price, Ann. Rep. Prog. Chem. Sect. C 96, 3 (2000)

    Article  Google Scholar 

  5. W.S. Price, NMR Studies of Translational Motion. Principles and Application (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  6. S.B. Zimmerman, S.O. Trach, J. Mol. Biol. 222, 599 (1991)

    Article  Google Scholar 

  7. I.M. Kuznetsova, K.K. Turoverov, V.N. Uversky, Int. J. Mol. Sci. 15, 23090 (2014)

    Article  Google Scholar 

  8. S.B. Zimmerman, A.P. Minton, Annu. Rev. Biophys. Biomol. Struct. 22, 27 (1993)

    Article  Google Scholar 

  9. G.B. Ralston, J. Chem. Educ. 67, 857 (2005)

    Article  Google Scholar 

  10. I.V. Nesmelova, V.D. Skirda, V.D. Fedotov, Biopolymers 63, 132 (2002)

    Article  Google Scholar 

  11. M. Roos, S. Link, J. Balbach, A. Krushelnitsky, K. Saalwãchter, Biophys. J. 108, 98 (2015)

    Article  ADS  Google Scholar 

  12. D.L. Melnikova, V.D. Skirda, I.V. Nesmelova, J. Phys. Chem. B 120, 10192 (2017)

    Google Scholar 

  13. B. Raynal, B. Cardinali, J. Grimbergen, A. Profumo, S.T. Lord, P. England, M. Rocco, Thromb. Res. 132, e48 (2013)

    Article  Google Scholar 

  14. B. Cardinali, A. Profumo, A. April, O. Byron, G. Morris, S.E. Harding, W.F. Stafford, M. Rocco, Arch. Biochem. Biophys. 493, 157 (2010)

    Article  Google Scholar 

  15. P.S. Russo, in Dynamic Light Scattering: The Method and Some Applications, ed. by W. Brown (Oxford University Press, Oxford, 1995), pp. 512–553

    Google Scholar 

  16. O.I. Gnezdilov, Y.F. Zuev, O.S. Zueva, K.S. Potarikina, O.G. Us’yarov, Appl. Magn. Reson. 40, 91 (2011)

    Article  Google Scholar 

  17. Yu.F. Zuev, R.Kh. Kurbanov, B.Z. Idiyatullin, O.G. Us’yarov, Appl. Magn. Reson. 69, 444 (2007)

    Google Scholar 

  18. E.A. Stupishina, D.A. Faizullin, N.L. Zakhartchenko, V.D. Fedotov, Yu.F. Zuev, Mendeleev Commun. N6, 237 (2001)

    Article  Google Scholar 

  19. Yu.F. Zuev, N.N. Vylegzhanina, N.L. Zakhartchenko, Appl. Magn. Reson. 25, 29 (2003)

    Article  Google Scholar 

  20. E.A. Ermakova, N.L. Zakhartchenko, Yu.F. Zuev, Coll. Surf. A Physiochem. Eng. Asp. 317, 297 (2008)

    Article  Google Scholar 

  21. E.A. Ermakova, N.L. Zakhartchenko, Yu.F. Zuev, Eur. Biophys. J. 39, 1335 (2010)

    Article  Google Scholar 

  22. R.I. Litvinov, D.A. Faizullin, Yu.F. Zuev, J.W. Weisel, Biophys. J. 103, 1020 (2012)

    Article  ADS  Google Scholar 

  23. Yu.A. Valiullina, E.A. Ermakova, D.A. Faizullin, A.B. Mirgoradakaya, Yu.F. Zuev, Russ. Chem. Bul. 63, 273 (2014)

    Article  Google Scholar 

  24. M. Tokuyama, I. Oppenheim, Phys. Rev. E 50, R16–R19 (1994)

    Article  ADS  Google Scholar 

  25. H. Vink, J. Chem. Soc. Faraday Trans. I 81, 1725 (1985)

    Article  Google Scholar 

  26. L. Masaro, X.X. Zhu, Prog. Polym. Sci. 24, 731 (1999)

    Article  Google Scholar 

  27. J.T. Padding, Theory of Polymer Dynamics (University of Cambridge, Cambridge, 2005)

    Google Scholar 

  28. M. Rubinstein,  R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2012)

    Google Scholar 

  29. Y.F. Zuev, R.I. Litvinov, A.E. Sitnitsky, B.Z. Idiyatullin, D.R. Bakirova, D.K. Galanakis, A. Zhmurov, V. Barsegov, J.W. Weisel, J. Phys. Chem. B (2017). doi:10.1021/acs.jpcb.7b05654

    Google Scholar 

  30. E.S.G. Shaqfeh, G.H. Fredrickson, Phys. Fluids A 2, 7 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.K.G. Dhont, W.J. Briels, Colloid Surf. A Physicochem. Eng. Asp. 213, 131 (2003)

    Article  Google Scholar 

  32. J.K.G. Dhont, W.J. Briels, in Soft Matter Volume 2: Complex Colloidal Suspensions, ed. by G. Gompper, M. Schick (Wiley, Hoboken, 2006)

    Google Scholar 

  33. J.D. Sherwood, J. Fluid Mech. 111, 347 (1981)

    Article  ADS  Google Scholar 

  34. H.J.V. Tyrrell, K.R. Harris, Diffusion in Liquids (Butterworth, Cambridge, 1984)

    Google Scholar 

  35. R.M. Mazo, Brownian Motion (Clarendon Press, Oxford, 2002)

    MATH  Google Scholar 

  36. C. Le Bon, T. Nicolai, M.E. Kuil, J.G. Hollander, J. Phys. Chem. B 103, 10294 (1999)

    Article  Google Scholar 

  37. M.B. Taraban, L. Yu, Y. Feng, E.V. Jouravleva, M.A. Anisimov, Z.-X. Jiang, Y.B. Yu, RSC Adv. 4, 54565 (2014)

    Article  Google Scholar 

  38. W. Brown, R. Rymden, J. Phys. Chem. 91, 3565 (1987)

    Article  Google Scholar 

  39. A.-L. Kjøniksen, K. Zhu, M.A. Behrens, J.S. Pedersen, B. Nystrom, J. Phys. Chem. B 115, 2125 (2011)

    Article  Google Scholar 

  40. Y. Einaga, Polym. J. 41, 157 (2009)

    Article  Google Scholar 

  41. H. Wassenius, J.-E. Lofroth, M. Nyden, Starch Starke 58, 66 (2006)

    Article  Google Scholar 

  42. J. Rauch, W. Köhler, J. Chem. Phys. 119, 11977 (2003)

    Article  ADS  Google Scholar 

  43. Z. Bu, P.S. Russo, D.L. Tipton, I.I. Negulescu, Macromolecules 27, 6871 (1994)

    Article  ADS  Google Scholar 

  44. J. Appell, G. Porte, E. Buhler, J. Phys. Chem. B 109, 13186 (2005)

    Article  Google Scholar 

  45. P.J. Daivis, D.N. Pinder, P.T. Callaghan, Macromolecules 25, 170 (1992)

    Article  ADS  Google Scholar 

  46. S.J. Law, M.M. Britton, Langmuir 28, 11699 (2012)

    Article  Google Scholar 

  47. K.H. Keller, E.R. Canales, S.I. Yum, J. Phys. Chem. 75, 379 (1971)

    Article  Google Scholar 

  48. C.H. Everhart, C.S. Johnson Jr., J. Magn. Reson. 48, 395 (1982)

    Google Scholar 

  49. S.J. Gibbs, A.S. Chu, E.N. Lightfoot, T.W. Root, J. Phys. Chem. 95, 467 (1991)

    Article  Google Scholar 

  50. J.L. Coffman, E.N. Lightfoot, T.W. Root, J. Phys. Chem. 101, 2218 (1997)

    Article  Google Scholar 

  51. H. Tsukada, D.M. Blow, J. Mol. Biol. 184, 703 (1985)

    Article  Google Scholar 

  52. T.A. Steitz, R.G. Shulman, Annu. Rev. Biophys. Bioeng. 11, 419 (1982)

    Article  Google Scholar 

  53. D.H. Wu, A.D. Chen, C.S. Johnson, J. Magn. Reson. Ser. A 115, 260 (1995)

    Article  ADS  Google Scholar 

  54. T.R. Hoye, B.M. Eklov, T.D. Ryba, M. Voloshin, L.J. Yao, Org. Lett. 6, 953 (2004)

    Article  Google Scholar 

  55. A.I. Maklakov, V.D. Skirda, N.F. Fatkullin, Self-Diffusion in Polymer Solutions and Melts (Kazan University Press, Kazan, 1987), p. 224

    Google Scholar 

  56. L.V. Medved, J.W. Weisel, J. Thromb. Haemost. 7, 355 (2009)

    Article  Google Scholar 

  57. J.W. Weisel, C.V. Stauffacher, E. Bullitt, C. Cohen, Science 230, 1388 (1985)

    Article  ADS  Google Scholar 

  58. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, J. Comput. Chem. 25, 1605 (2004)

    Article  Google Scholar 

  59. A.V. Levashov, Y.L. Khmelnitsky, N.L. Klyachko, V.Ya. Chernyak, K. Martinek, J. Colloid Interface Sci. 88, 444 (1982)

    Article  ADS  Google Scholar 

  60. L.M. Siegel, K.J. Monty, Biochim. Biophys. Acta 112, 346 (1966)

    Article  Google Scholar 

  61. V. Pattabhi, B. Syed Ibrahim, N. Shamaladevi, J. Biomol. Struct. Dyn. 21, 737 (2004)

    Article  Google Scholar 

  62. C. Capasso, M. Rizzi, E. Menegatti, P. Ascenzi, M. Bolognesi, J. Mol. Recog. 10, 26 (1997)

    Article  Google Scholar 

  63. G. Tsurupa, L. Tsonev, L. Medved, Biochemistry 41, 6449 (2002)

    Article  Google Scholar 

  64. R.I. Litvinov, S. Yakovlev, G. Tsurupa, O.V. Gorkun, L. Medved, J.W. Weisel, Biochemistry 46, 9133 (2007)

    Article  Google Scholar 

  65. M.J. Urban, I.T. Holder, M. Schmid, V.F. Espin, J.G. de la Torre, J.S. Hartig, H. Cölfen, ACS Nano 10, 7418 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. D. Faizullin (Kazan Institute of Biochemistry and Biophysics, Russian Federation) for helpful suggestions on the structure of studied proteins, Dr. R. Litvinov (University of Pennsylvania, USA), Dr. A. Zhmurov and Dr. V. Barsegov (Moscow Institute of Physics and Technology, Russian Federation) for helpful discussion about self-diffusion of fibrinogen. This work was supported by grants from the Russian Foundation for Basic Research and the Government of Tatarstan Republic (no. 15-44-02230) and from the Russian Foundation for Basic Research (no. 15-29-01239). Part of the work was performed in accordance with the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Zuev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusova, A.M., Sitnitsky, A.E., Idiyatullin, B.Z. et al. The Effect of Shape and Concentration on Translational Diffusion of Proteins Measured by PFG NMR. Appl Magn Reson 49, 35–51 (2018). https://doi.org/10.1007/s00723-017-0957-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0957-y

Navigation