Skip to main content
Log in

GPU-Accelerated Self-Calibrating GRAPPA Operator Gridding for Rapid Reconstruction of Non-Cartesian MRI Data

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Self-calibrating GRAPPA operator gridding (SC-GROG) is a method by which non-Cartesian (NC) data in magnetic resonance imaging (MRI) are shifted to the Cartesian k-space grid locations using the parallel imaging concept of GRAPPA operator. However, gridding with SC-GROG becomes computationally expensive and leads to longer reconstruction time when mapping a large number of NC samples in MRI data to the nearest Cartesian grid locations. This work aims to accelerate the SC-GROG for radial acquisitions in MRI, using massively parallel architecture of graphics processing units (GPUs). For this purpose, a novel implementation of GPU-accelerated SC-GROG is presented, which exploits the inherent parallelism in gridding operations. The proposed method employs the look-up-table (LUT)-based optimized kernels of compute unified device architecture (CUDA), to pre-calculate all the possible combinations of 2D-gridding weight sets and uses appropriate weight sets to shift the NC signals from multi-channel receiver coils at the nearest Cartesian grid locations. In the proposed method, LUTs are implemented to avoid the race condition among the CUDA kernel threads while shifting various NC points to the same Cartesian grid location. Several experiments using 24-channel simulated phantom and (12 and 30 channel) in vivo data sets are performed to evaluate the efficacy of the proposed method in terms of computation time and reconstruction accuracy. The results show that the GPU-based implementation of SC-GROG can significantly improve the image reconstruction efficiency, typically achieving 6× to 30× speed-up (including transfer time between CPU and GPU memory) without compromising the quality of image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.B. Paschal, H.D. Morris, J. Magn. Reson. Imaging. 19, 145–159 (2004)

    Article  Google Scholar 

  2. A. Deshmane, V. Gulani, M.A. Griswold, N. Seiberlich, J. Magn. Reson. Imaging. 36, 55–72 (2012)

    Article  Google Scholar 

  3. M.A. Griswold, in Parallel Imaging in clinical MR applications (Springer, Berlin, Heidelberg, 2007), pp. 19–36

  4. A.S. Irfan, A. Nisar, H. Shahzad, H. Omer, Appl. Magn. Reson. 47, 487–498 (2016)

    Article  Google Scholar 

  5. M. Kaleem, M. Qureshi, H. Omer, Appl. Magn. Reson. 47, 415–428 (2016)

    Article  Google Scholar 

  6. P.C. Lauterbur, Clin. orthop. relat. res. 244, 3–6 (1989)

    Google Scholar 

  7. G. Glover, J. Pauly, Magn. Reson. Med. 28, 275–289 (1992)

    Article  Google Scholar 

  8. C. Ahn, J. Kim, Z. Cho, IEEE Trans. Med. Imaging. 5, 2–7 (1986)

    Article  Google Scholar 

  9. C.H. Meyer, B.S. Hu, D.G. Nishimura, A. Macovski, Magn. Reson. Med. 28, 202–213 (1992)

    Article  Google Scholar 

  10. D.C. Noll, IEEE Trans. Med. Imaging 16, 372–377 (1997)

    Article  Google Scholar 

  11. J.G. Pipe, Magn. Reson. Med. 42, 963–969 (1999)

    Article  Google Scholar 

  12. K.L. Wright, J.I. Hamilton, M.A. Griswold, V. Gulani, N. Seiberlich, J. Magn. Reson. Imaging. 40, 1022–1040 (2014)

    Article  Google Scholar 

  13. J. D. O'Sullivan, IEEE Trans. Med. Imaging. 4(4), 200–207 (1985)

    Article  Google Scholar 

  14. J.I. Jackson, C.H. Meyer, D.G. Nishimura, A. Macovski, IEEE Trans. Med. Imaging 10, 473–478 (1991)

    Article  Google Scholar 

  15. J.A. Fessler, J. Magn. Reson. 188, 191–195 (2007)

    Article  ADS  Google Scholar 

  16. D. Rosenfeld, Magn. Reson. Med. 40, 14–23 (1998)

    Article  Google Scholar 

  17. D. Rosenfeld, Magn. Reson. Med. 48, 193–202 (2002)

    Article  Google Scholar 

  18. H. Moriguchi, J.L. Duerk, Magn. Reson. Med. 51, 343–352 (2004)

    Article  Google Scholar 

  19. R.E. Gabr, P. Aksit, P.A. Bottomley, A.B.M. Youssef, Y.M. Kadah, Magn. Reson. Med. 56, 1182–1191 (2006)

    Article  Google Scholar 

  20. M.A. Griswold, M. Blaimer, F. Breuer, R.M. Heidemann, M. Mueller, P.M. Jakob, Magn. Reson. Med. 54, 1553–1556 (2005)

    Article  Google Scholar 

  21. N. Seiberlich, F.A. Breuer, M. Blaimer, K. Barkauskas, P.M. Jakob, M.A. Griswold, Magn. Reson. Med. 58, 1257–1265 (2007)

    Article  Google Scholar 

  22. N. Seiberlich, F. Breuer, M. Blaimer, P. Jakob, M. Griswold, Magn. Reson. Med. 59, 930–935 (2008)

    Article  Google Scholar 

  23. H. Saybasili, J.A. Derbyshire, P. Kellman, M.A. Griswold, C. Ozturk, R.J. Lederman, N. Seiberlich, Magn. Reson. Med. 64, 306–312 (2010)

    Article  Google Scholar 

  24. S.S. Stone, J.P. Haldar, S.C. Tsao, B. Sutton, Z.-P. Liang, J. Parallel Distrib. Comput. 68, 1307–1318 (2008)

    Article  Google Scholar 

  25. T. Schiwietz, T.-C. Chang, P. Speier, R. Westermann, in Proceedings of the SPIE, vol. 6142, ed. by M. J, Flynn, J. Hsieh (2006), pp. 1279–1290. doi:10.1117/12.652223

  26. T.S. Sørensen, T. Schaeffter, K.Ø. Noe, M.S. Hansen, IEEE Trans. Med. Imaging. 27, 538–547 (2008)

    Article  Google Scholar 

  27. X.-L. Wu, J. Gai, F. Lam, M. Fu, J.P. Haldar, Y. Zhuo, Z.-P. Liang, W.-M. Hwu, B.P. Sutton, in IEEE International Symposium on Biomedical Imaging: From Nano to Macro (Chicago, Illinois, USA, 30 March–2 April 2011), pp. 69–72

  28. J. Gai, N. Obeid, J.L. Holtrop, X.-L. Wu, F. Lam, M. Fu, P.H. Justin, W.H. Wen-mei, Z.-P. Liang, B.P. Sutton, J. Parallel Distrib. Comput. 73, 686–697 (2013)

    Article  Google Scholar 

  29. H. Shahzad, M. Sadaqat, B. Hassan, W. Abbasi, H. Omer, Appl. Magn. Reson. 47, 53–61 (2016)

    Article  Google Scholar 

  30. T.S. Sorensen, D. Atkinson, T. Schaeffter, M.S. Hansen, IEEE Trans. Med. Imaging. 28, 1974–1985 (2009)

    Article  Google Scholar 

  31. M.S. Hansen, D. Atkinson, T.S. Sorensen, Magn. Reson. Med. 59, 463–468 (2008)

    Article  Google Scholar 

  32. N. Obeid, I. Atkinson, K. Thulborn, W.-M. Hwu, in Proceedings of 19th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), (Montreal, Quebec, Canada, 7–13 May 2011), p. 2547

  33. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  34. S.A. Qazi, A. Saeed, S. Nasir, H. Omer, Appl. Magn. Reson. 48, 461–471 (2017)

    Article  Google Scholar 

  35. Miscrosoft Visual Studio, (2010), Available: https://msdn.microsoft.com/enus/library/52f3sw5c(v=vs.100).aspx. Accessed 12 May 2017

  36. NVIDIA CUDA C Programming Guide (F.4.2), Available: http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf. Accessed 12 May 2017

  37. J.V. Manjón, J. Carbonell-Caballero, J.J. Lull, G. García-Martí, L. Martí-Bonmatí, M. Robles, Med. Image Anal. 12, 514–523 (2008)

    Article  Google Scholar 

  38. M. Khan, T. Aslam, H. Shahzad, H. Omer, Appl. Magn. Reson. 48, 227–240 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Nicole Seiberlich, Assistant Professor, Department of Biomedical Engineering, Case Western Reserve University, for providing guidance under the International Research Support Initiative Program by Higher Education Commission, Government of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omair Inam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inam, O., Qureshi, M., Malik, S.A. et al. GPU-Accelerated Self-Calibrating GRAPPA Operator Gridding for Rapid Reconstruction of Non-Cartesian MRI Data. Appl Magn Reson 48, 1055–1074 (2017). https://doi.org/10.1007/s00723-017-0932-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0932-7

Navigation