Skip to main content
Log in

Singular Value Decomposition Using Jacobi Algorithm in pMRI and CS

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) have been recently used to accelerate data acquisition process in MRI. Matrix inversion (for rectangular matrices) is required to reconstruct images from the acquired under-sampled data in various pMRI algorithms (e.g., SENSE, GRAPPA) and CS. Singular value decomposition (SVD) provides a mechanism to accurately estimate pseudo-inverse of a rectangular matrix. This work proposes the use of Jacobi SVD algorithm to reconstruct MR images from the acquired under-sampled data both in pMRI and in CS. The use of Jacobi SVD algorithm is proposed in advance MRI reconstruction algorithms, including SENSE, GRAPPA, and low-rank matrix estimation in L + S model for matrix inversion and estimation of singular values. Experiments are performed on 1.5T human head MRI data and 3T cardiac perfusion MRI data for different acceleration factors. The reconstructed images are analyzed using artifact power and central line profiles. The results show that the Jacobi SVD algorithm successfully reconstructs the images in SENSE, GRAPPA, and L + S algorithms. The benefit of using Jacobi SVD algorithm for MRI image reconstruction is its suitability for parallel computation on GPUs, which may be a great help in reducing the image reconstruction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Eber, P. Aurora, K.C.L. Carlsen, A. Lindblad, J.E. Dankert-Roelse, R.I. Ross-Russell, S.W. Turner, F. Midulla, G. Hedlin, Eur. Respir. J. 40(1), 215–226 (2012)

    Article  Google Scholar 

  2. M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  3. D.J. Larkman, R.G. Nunes, Phys. Med. Biol. 52(7), R15 (2007)

    Article  ADS  Google Scholar 

  4. M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  ADS  Google Scholar 

  5. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  6. D.M. Lyra-Leite, J.P.C.L. da Costa, J.L.A. de Carvalho, in: 2012 Workshop on Engineering Applications (IEEE, 2012) p. 1–6

  7. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  8. R. Otazo, E. Candes, D.K. Sodickson, Magn. Reson. Med. 73(3), 1125–1136 (2015)

    Article  Google Scholar 

  9. Y. Yu, M. Hong, F. Liu, H. Wang, S. Crozier, in: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2011) p. 5734–5737

  10. J.J. Wei, C.J. Chang, N.K. Chou, G.J. Jan, IEEE Trans. Inf. Technol. Biomed. 5(4), 290–299 (2001)

    Article  Google Scholar 

  11. M. Lebrun, A. Leclaire, Image Process. Line 2, 96–133 (2012)

    Article  Google Scholar 

  12. G. Golub, W. Kahan, J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 2(2), 205–224 (1965)

    Article  Google Scholar 

  13. D.M. Lyra-Leite, J.P.C.L. da Costa, J.L.A. de Carvalho, Ingeniería 17(2), 35–45 (2012)

    Google Scholar 

  14. L. Zhang, W. Dong, D. Zhang, G. Shi, Pattern Recogn. 43(4), 1531–1549 (2010)

    Article  Google Scholar 

  15. T. Zhang, J.M. Pauly, S.S. Vasanawala, M. Lustig, Magn. Reson. Med. 69(2), 571–582 (2013)

    Article  Google Scholar 

  16. A. Deshmane, V. Gulani, M.A. Griswold, N. Seiberlich, J. Magn. Reson. Imaging 36(1), 55–72 (2012)

    Article  Google Scholar 

  17. S. Aja-Fernández, D.G. Martín, A. Tristán-Vega, G. Vegas-Sánchez-Ferrero, Int J Comput Assist Radiol Surg. 10(10), 1699–1710 (2015)

    Article  Google Scholar 

  18. T.A. Depew, (Doctoral dissertation, University of British Columbia) (2015)

  19. R. Nana, On optimality and efficiency of parallel magnetic resonance imaging reconstruction: challenges and solutions, PhD Dissertation (ProQuest, 2008)

  20. A. Majumdar, (Cambridge University Press, 2015)

  21. L.V. Foster, Linear Algebra Appl. 74, 47–71 (1986)

    Article  MathSciNet  Google Scholar 

  22. P. Drineas, R. Kannan, M.W. Mahoney, SIAM J. Comput. 36(1), 158–183 (2006)

    Article  MathSciNet  Google Scholar 

  23. C.G.J. Jacobi, J. Reine Angew. Math. 30, 51–94 (1846)

  24. X. Wang, J. Zambreno, in: 2014 IEEE International Parallel & Distributed Processing Symposium Workshops (IEEE, 2014) p. 220–227

  25. C.C. Sun, J. Goetze, in: 2013 IEEE International Symposium on Intelligent Signal Processing and Communications Systems (IEEE, 2013) p. 1–4

  26. P.J. Eberlein, H. Park, J. Parallel Distrib. Comput. 8(4), 358–366 (1990)

    Article  ADS  Google Scholar 

  27. Available Online. http://web.eecs.umich.edu/~fessler/code/index.html. Accessed: 13 Sep 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohaib A. Qazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qazi, S.A., Saeed, A., Nasir, S. et al. Singular Value Decomposition Using Jacobi Algorithm in pMRI and CS. Appl Magn Reson 48, 461–471 (2017). https://doi.org/10.1007/s00723-017-0874-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0874-0

Keywords

Navigation