Skip to main content
Log in

Floquet Hamiltonian and Entanglement in Spin Systems in Periodic Magnetic Fields

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We investigate entanglement in a two-spin system with the dipole–dipole interaction in the multi-pulse spin locking nuclear magnetic resonance (NMR) experiment. We discover a conflict between an exact solution and the standard approximation employing a time-independent effective Floquet Hamiltonian. While the exact solution shows nonzero entanglement in the system, the perturbative Floquet approach predicts that entanglement is absent. The failure of the Floquet method is explained by the multivaluedness of the Floquet Hamiltonian. Correct results can only be obtained with a proper choice of the branch of the Hamiltonian. The same issue is present in other applications of the Floquet theorem in the perturbation theory beyond NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that the unitary transformation (52) is local and hence cannot change entanglement [32]. Entanglement changes when an approximate effective time-independent Hamiltonian is produced from Eq. (52). Indeed, the averaging of the Hamiltonian over the period \(2\pi /\omega _1\) can be understood as a nonlocal transformation [N. N. Bogoliubov and Yu. A. Mitropolskiy, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1964) and Ref. [20]] which affects entanglement. This explains the failure of the perturbative Floquet approach.

References

  1. A.-M.G. Floquet, Ann. Ecole Norm. Sup. 2(12), 47–89 (1883)

    Article  Google Scholar 

  2. H. Sambe, Phys. Rev. A 7, 2203 (1973)

    Article  ADS  Google Scholar 

  3. S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005)

    Article  ADS  Google Scholar 

  4. L. D’Alessio, M. Rigol, Phy. Rev. X. 4, 041048 (2014)

    Google Scholar 

  5. T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, H. Aoki, Phys. Rev. B 93, 144307 (2016)

    Article  ADS  Google Scholar 

  6. N.H. Linder, G. Refael, V. Galitski, Nat. Phys. 7, 490 (2011)

    Article  Google Scholar 

  7. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Notle, M. Segev, A. Szameit, Nature 496, 196 (2013)

    Article  ADS  Google Scholar 

  8. U. Haeberlen, High Resolution NMR in Solids. Selective Averaging (Academic Press, New York, 1976)

    Google Scholar 

  9. W.-K. Rhim, A. Pines, J.S. Waugh, Phys. Rev. B. 3, 684 (1971)

    Article  ADS  Google Scholar 

  10. J. Baum, M. Munowitz, A.N. Garroway, A. Pines, J. Chem. Phys. 83, 2015 (1985)

    Article  ADS  Google Scholar 

  11. S. Ding, C.A. McDowell, C. Ye, M. Zhan, X. Zhu, K. Gao, X. Sun, X.-A. Mao, M. Liu, Eur. Phys. J. B 24, 23 (2001)

    Article  ADS  Google Scholar 

  12. R.M. Serra, I.S. Oliveira, Phil. Trans. R. Soc. A 370, 4615 (2012)

    Article  ADS  Google Scholar 

  13. J.A. Jones, Prog. Nuclear Magn. Reson. Spectrosc. 59, 91 (2011)

    Article  Google Scholar 

  14. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  15. E.D. Ostroff, J.S. Waugh, Phys. Rev. Lett. 16, 1097 (1966)

    Article  ADS  Google Scholar 

  16. P. Mansfield, D. Ware, Phys. Lett. 22, 133 (1966)

    Article  ADS  Google Scholar 

  17. W. Magnus, Commun. Pure Appl. Math. VII, 649 (1954).

  18. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  19. U. Haeberlen, J.S. Waugh, Phys. Rev. 175, 453 (1968)

    Article  ADS  Google Scholar 

  20. B.N. Provotorov, E.B. Feldman, Zh. Eksp. Teor. Fiz. 79, 2206 (1980)

    Google Scholar 

  21. L.L. Buishvili, E.B. Volzhan, M.G. Menabde, Theor. Math. Phys. 46, 166 (1981)

    Article  Google Scholar 

  22. M.M. Maricq, Phys. Rev. B 25, 6622 (1982)

    Article  ADS  Google Scholar 

  23. V.L. Bodneva, A.A. Milyutin, E.B. Feldman, Zh. Eksp. Teor. Fiz. 92, 1376 (1987)

    Google Scholar 

  24. T. Nattermann, arXiv:cond-mat/9705295

  25. G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)

    Article  ADS  Google Scholar 

  26. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)

    Google Scholar 

  27. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon Press, Oxford, 1970)

    Google Scholar 

  28. Y.N. Ivanov, B.N. Provotorov, E.B. Feldman, Zh. Eksp. Teor. Fiz. 75, 1847 (1978)

    Google Scholar 

  29. Y.N. Ivanov, B.N. Provotorov, E.B. Feldman, JETP Lett. 27, 153 (1978)

    ADS  Google Scholar 

  30. J.S. Waugh, C.H. Wang, Phys. Rev. 163, 209 (1967)

    Article  ADS  Google Scholar 

  31. P. Mansfield, D. Ware, Phys. Lett. 168, 318 (1968)

    Google Scholar 

  32. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  33. E.B. Fel’dman, E.I. Kuznetsova, M.A. Yurishchev, J. Phys. A Math. Theor. 45, 475304 (2012)

    Article  ADS  Google Scholar 

  34. E.I. Kuznetsova, E.B. Fel’dman, D.E. Feldman, Physics-Uspekhi 59, 577 (2016)

    Article  ADS  Google Scholar 

  35. A. Eckardt, E. Anisimovas, New J. Phys. 17, 093039 (2015)

    Article  ADS  Google Scholar 

  36. D.E. Feldman, Phys. Rev. Lett. 88, 177202 (2002)

    Article  ADS  Google Scholar 

  37. D.E. Feldman, Int. J. Modern Phys. B 15, 2945 (2001)

    Article  ADS  Google Scholar 

  38. E.B. Fel’dman, Phys. Lett. A 104, 479 (1984)

    Article  ADS  Google Scholar 

  39. A. Abragam, M. Goldman, Nuclear Magnetism: Order and Disorder (Clarendon Press, Oxford, 1982)

    Google Scholar 

  40. L.N. Erofeev, B.A. Shumm, JETP Lett. 27, 149 (1978)

    ADS  Google Scholar 

  41. L.N. Yerofeev, B.A. Shumm, G.B. Manelis, Zh. Eksp. Teor. Fiz. 75, 1837 (1978)

    Google Scholar 

  42. G.B. Furman, V.M. Meerovich, V.L. Sokolovsky, Quant. Inf. Process. 10, 307 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kuznetsova.

Additional information

This work was supported by the Russian Foundation for Basic Research (Grant 16-03-00056) and the Program of the Presidium of RAS “Electron spin resonance, spin-dependent electron effects, and spin technologies” (Grant 0089-2015-0191).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fel’dman, E.B., Feldman, D.E. & Kuznetsova, E.I. Floquet Hamiltonian and Entanglement in Spin Systems in Periodic Magnetic Fields. Appl Magn Reson 48, 517–531 (2017). https://doi.org/10.1007/s00723-017-0879-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0879-8

Keywords

Navigation