Skip to main content
Log in

Skin Effect Estimation in Radiofrequency Coils for Nuclear Magnetic Resonance Applications

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The design and development of dedicated radiofrequency (RF) coils is a fundamental task to maximize the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications. Coil resistance reduces the SNR and should be minimized by employing conductors of appropriate shape and cross section. At RF, the conductor resistance is increased due to the skin effect, which distributes the current primarily on the surface of the conductor instead of uniformly over the cross section. In particular, in rectangular shape conductors the current density is concentrated in the high-curvature area and increases the conductor resistance, while rounded conductors present lower resistance and demonstrate improvements in performance especially in low-frequency tuned coils. This paper summarizes the different methods for estimating conductor losses in RF coils for NMR applications, whose performance strongly affect quality data. Because the impact to coil loss from conductors with different cross-sectional area is not something generally recognized and nor addressed in many other coil design works, we believe the review could be interesting for researchers working in the field of NMR coil design and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging (CRC Press, Boca Raton, 1999)

    Google Scholar 

  2. D.I. Hoult, R.E. Richards, J. Magn. Reson. 24, 71–85 (1976)

    ADS  Google Scholar 

  3. D.I. Hoult, P.C. Lauterbur, J. Magn. Reson. 34, 415–433 (1979)

    ADS  Google Scholar 

  4. T. Claasen-Vujcic, H.M. Borsboom, H.J.G. Gaykema, T. Mehlkopf, Magn. Reson. Med. 36, 111–116 (1996)

    Article  Google Scholar 

  5. G. Giovannetti, V. Hartwig, V. Positano, N. Vanello, Crit. Rev. Biomed. Eng. 42(2), 109–134 (2014)

    Article  Google Scholar 

  6. D.I. Hoult, Concepts Magn. Reson. 12, 173–187 (2000)

    Article  Google Scholar 

  7. A. Haase, F. Odoj, M. Von Kienlin, J. Warnking, F. Fidler, A. Weisser, M. Nittka, E. Rommel, T. Lanz, B. Kalusche, M. Griswold, Concepts Magn. Reson. 12(6), 361–388 (2000)

    Article  Google Scholar 

  8. C.E. Hayes, W.A. Edelstein, J.F. Schenck, O.M. Mueller, M. Eash, J. Magn. Reson. 63(3), 622–628 (1985)

    ADS  Google Scholar 

  9. W.A. Edelstein, G.H. Glover, C.J. Hardy, R.W. Redington, Magn. Reson. Med. 3, 604–618 (1986)

    Article  Google Scholar 

  10. S.E. Hurlston, G.P. Cofer, G.A. Johnson, Int. J. Imag. Syst. Technol. 8, 277–284 (1997)

    Article  Google Scholar 

  11. C. Chen, D.J. Hoult, Biomedical Magnetic Resonance Technology (IOP, Bristol, 1989)

    Google Scholar 

  12. R.E. Matick, Transmission Lines for Digital and Communication Networks (McGraw–Hill, New York, 1969)

    Google Scholar 

  13. V. Belevitch, Philips Tech. Rev. 32(6/7, 18), 221–231 (1971)

  14. J.W. Carlson, Magn. Reson. Med. 3, 778–790 (1986)

    Article  Google Scholar 

  15. K. Schmidt, Approximate R. F. resistance of rectangular cross section conductors. http://fermi.la.asu.edu/w9cf/articles/equiv/equiv.html. Accessed 10 Jan 2016

  16. F.E. Terman, Radio Engineers’ Handbook (McGraw-Hill Book Comp., New York, London, 1943)

  17. D. Gerling, Approximate analytical calculation of the skin effect in rectangular wires. International Conference on Electrical Machines and Systems (ICEMS 2009), 15–18 November 2009, Tokyo, (2009), p. 1–6

  18. J. Guo, D. Kajfez, A.W. Glisson, Electr. Lett. 33(11), 966–967 (1997)

    Article  Google Scholar 

  19. R.A. Sainati, T.J. Moravec, I.E.E.E. Trans, Circuits Syst. 36, 533–540 (1989)

    Google Scholar 

  20. J. Mispelter, M. Lupu, A. Briguet, NMR Probeheads for Biophysical and Biomedical Experiments (Imperial College Press, London, 2015)

    Book  Google Scholar 

  21. R. Faraji-Dana, Y. Chow, in IEE Proceedings, 1990, vol. 137, Pt. H, no. 2

  22. G. Giovannetti, R. Francesconi, L. Landini, M.F. Santarelli, V. Positano, V. Viti, A. Benassi, Concepts Magn. Reson. Part B: Magn. Reson. Eng. 20B, 9–16 (2004)

    Article  Google Scholar 

  23. F.D. Doty, G. Entzminger Jr, C.D. Hauck, J.P. Staab, J. Magn. Reson. 138, 144–154 (1999)

    Article  ADS  Google Scholar 

  24. G. Giovannetti, V. Hartwig, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 39, 391–399 (2010)

    Article  Google Scholar 

  25. G. Giovannetti, V. Hartwig, L. Landini, M.F. Santarelli, Conc. Magn. Reson. Part B 41B(2), 57–61 (2012)

    Article  Google Scholar 

  26. A. Kuehne, S. Goluch, P. Waxmann, F. Seifert, B. Ittermann, E. Moser, E. Laistler, Magn. Reson. Med. 74(4), 1165–1176 (2015)

    Article  Google Scholar 

  27. A. Kuehne, H. Waiczies, E. Moser, E. Laistler, in Proceedings of the ISMRM, Milan, Italy, 2014, p. 1363

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Giovannetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovannetti, G., Tiberi, G. Skin Effect Estimation in Radiofrequency Coils for Nuclear Magnetic Resonance Applications. Appl Magn Reson 47, 601–612 (2016). https://doi.org/10.1007/s00723-016-0780-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0780-x

Keywords

Navigation