Skip to main content

Antennas in MRI Systems

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies
  • 13k Accesses

Abstract

Today the Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging are very well-established methods for noninvasive investigations of live objects, substances and materials. The radio frequency (RF) coil is the first component where the Magnetic Resonance (MR) signal is stimulated and received and therefore is one of the most important components of a Magnetic Resonance Imaging (MRI) system. The design of properly developed RF coils is the key to achieve the best clinical, preclinical or experimental result for MRI scientists or clinicians. In this chapter a detailed overview on RF-coil concepts for MRI is presented. This article contains some results of my personal work and the study of many articles, reference textbooks, and other people’s work. The intention of this chapter is to give the reader a rough summary of the state-of-the-art knowledge and physical background of MRI RF coils engineering in an easy-to-understand format. This chapter contains three main sections. The first section is a simple introduction to MRI and will provide a basic understanding of MR physics behind the detection of RF signals for MRI for students who do not have any knowledge of MRI or NMR. The RF engineer must be familiar with these basic principles in order to design and build successfully a MRI RF coil. The next section is related to the basic types of RF coils. It is divided in multiple subsections covering volume coils and their basic design principles, local RF coils including their arrangement for so-called array RF coils, and last but not least cryogenically cooled RF coils. The last section discusses further directions and challenges in the field of MRI RF coil engineering and gives a brief description of active shaping of the RF field within a given volume and its challenges. While this section gives only a rough overview about the topics of MRI RF coil engineering, the interested reader will find the most interesting textbooks and articles in the reference section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagappan V et al (2008) A simplified 16-channel buttler matrix for parallel excitation with the birdcage modes at 7T. In: 16th annual meeting of ISMRM, Toronto

    Google Scholar 

  • Alderman DW, Grant DM (1979) Efficient decoupler coil design which reduces heating in conductive samples in superconducting spectrometers. J Mag Reson 36:447–451

    Google Scholar 

  • Becker/Sauter Theorie der Elektrizitätslehre Bd.1, Teubner, Stuttgart 1973

    Google Scholar 

  • Bloch F (1946) Nuclear induction. Phys Rev 70:460–474

    Article  Google Scholar 

  • Butler J et al (1963) Beamforming matrix simplifies design of electronically scanned antennas. Electron Design 9:170–173

    Google Scholar 

  • Canet D (1996) Nuclear magnetic resonance: concepts and methods. Wiley, New York

    Google Scholar 

  • Chin C-L, Collins CM et al (2002a) Birdcage builder: design of specified-geometry birdcage coils with desired current pattern and resonant frequency. Concepts Magn Reson 15(2):156–163

    Article  Google Scholar 

  • Chin C-L, Collins CM, Li S, Dardzinski BJ, Smith MB (2002b) Birdcage builder: design of specified-geometry birdcage coils with desired current pattern and resonant frequency. Magn Reson Eng 15(2):156–163

    Article  Google Scholar 

  • Damadian R (1981) NMR in medicine, NMR basic principles and progress, vol 19. Springer, New York

    Google Scholar 

  • Darrasse L, Ginefri JC (2003) Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85:915–937

    Article  Google Scholar 

  • Fitzsimmons JR, Beck B, Brooker HR (1993) Double resonant quadrature birdcage. Magn Reson Med 30:107–114

    Article  Google Scholar 

  • Ginefri JC, Quinot MP, Girard O, Darrasse L (2007) Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high resolution in-vivo imaging of the mouse at 1.5T. Methods 43:54–67

    Article  Google Scholar 

  • Gonord P, Kan S (1994) Twin horseshoe resonator. Rev Sci Instr 65:509–510

    Article  Google Scholar 

  • Griswold MA et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  Google Scholar 

  • Grover FW (1946) Inductance calculation. Van Nostrand, New York

    Google Scholar 

  • Haacke EM et al (1996) Magnetic resonance imaging. Wiley, New York, 3ff

    Google Scholar 

  • Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging, physical principles and sequence design. Wiley, New York

    Google Scholar 

  • Haueisen R, Marek D, Sacher M, Kong F, Ugurbil K, Junge S (2006) Flexible Cryoprobe-setup for mice brain imaging and spectroscopy at 9.4T. Magma 19(suppl 1):78

    Google Scholar 

  • Haueisen et al. US Patent 2007/0139046

    Google Scholar 

  • Hayes CE, Edelstein WA, Schenk JF, Mueller OM, Eash M (1985) An efficient, highly homogenouse radiofrequency coil for whole body NMR Imaging at 1.5T. J MagN Reson 63:622–628

    Google Scholar 

  • Hould DI (2000) The principle of reciprocity in signal strength calculations – a mathematical guide. Concepts Magn Reson 12(4):173–187

    Article  Google Scholar 

  • Hoult DI (1979) Sensitivity optimization. In: Levy GC (ed) Experimental techniques in13C spectroscopy, vol 3. Wiley, New York

    Google Scholar 

  • Hoult DI, Kolansky G, Kripiakevich D (2004a) A 'Hi-Fi' Cartesian feedback spectrometer for precise quantitation and superior performance. J Magn Reson 171(1):57–63

    Article  Google Scholar 

  • Hoult DI, Kolansky G, Kripiakevich D, King SB (2004b) The NMR multi-transmit phased array: a Cartesian feedback approach. J Magn Reson 171(1):64–70

    Article  Google Scholar 

  • Jin J (1999) Electromagnetic analysis and design. CRC Press, Boca Raton

    Google Scholar 

  • Katscher U, Börnert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49:144–150

    Article  Google Scholar 

  • Kohlrausch F (1956) PraktischePhysikBd 2, TeubnerVerlagsgesellschaft

    Google Scholar 

  • Kurpad K et al (2006) RF current element design for independent control of current amplitude and phase in transmit phased arrays. Concepts Magn Reson B 29B(2):75–83

    Article  Google Scholar 

  • Lanz T (2000) The double tuned 1H23Na Crosscage resonator for high field NMR spectroscopy. In: Proc. 8th ISMRM, p 1390

    Google Scholar 

  • Lattanzi R, Sodickson DK (2012) Ideal current patterns yielding optimal signal-to-noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights. Magn Reson Med 68(1):286–304

    Article  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  Google Scholar 

  • Lawrence EC (1996) Image formation methods. In: Harris RK (ed) Encylopedia of Nuclear Magnetic Resonance, Wiley, Chichester, pp 2439–1350

    Google Scholar 

  • Lee RF et al (2002) Coupling and decoupling theory and its application to the MRI phased array. MRM 48:203–213

    Article  Google Scholar 

  • Leifer MC (1997) Resonant modes of the birdcage coil. J Magn Reson 124:51–60

    Article  Google Scholar 

  • Link J (1992) The design of resonator probes. NMR Basic Principle Progr 26:5–31

    Google Scholar 

  • Luyten RP et al (1989) Broadband proton decoupling in human 31P NMR spectroscopy. NMR Biomed 1:177

    Article  Google Scholar 

  • Mansfield P (1996) Encyclopedia of nuclear magnetic resonance. Bd. 3, Wiley, New York, 183ff

    Google Scholar 

  • Mispelter J et al (2006) NMR probeheads for biophysical and biomedical experiments. Imperial Colledge Press, Hackensack

    Book  Google Scholar 

  • Murphy-Boesch J, Srinivasan R, Caravajal L, Brown TR (1994) Two configurations of a four-ring coil for 1H human imaging and 1H-decoupled 31P spectroscopy of the human head. J Magn Res 103B:103–104

    Article  Google Scholar 

  • Ocali O, Atalar E (1998) Ultimate intrinsic signal-to noise ratio in MRI. MagnReson Med 39(3):462–473

    Article  Google Scholar 

  • Ohliger MA, Grant AK, Sodickson DK (2003) Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 50(5):1018–1030

    Article  Google Scholar 

  • Pruessmann KP et al (1999) SENSE: sensitivity encoding for fast MRI. MRM 42:952–962

    Article  Google Scholar 

  • Purcell EM, Torrey HC, Pound RH (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  Google Scholar 

  • Reykowski A et al (1995) Calculation of the signal-to-noise ratio for simple surface coils and arrays of coils. IEEE Trans Biomed Eng 42(9):908–917

    Article  Google Scholar 

  • Reykowski A et al (2002) Design of matching networks for low noise preamplifiers. Magn Reson Med 33(6):848–852

    Article  Google Scholar 

  • Roemer PB et al (1990) The NMR phased array. MRM 16:192–225

    Article  Google Scholar 

  • Röschmann P (1995) Analysis of mode spectra in cylindrical N-conductor transmission line resonators with expansion to low-, high- and bandpass birdcage structures. In: Proceedings 3rd annual meeting ISMRM, Nice, France, p 1000

    Google Scholar 

  • Schnall MD, Subramaniam VH, Leight JS, Chance B (1985) A new double-tuned probe for concurrent 1H and31P NMR. J Magn Reson 85:122–129

    Google Scholar 

  • Schneider H-J, Dullenkopf P (1977) Slotted tube resonator: a new NMR probe head at high observing frequencies. Rev Sci Instrum 48(1):68–73

    Article  Google Scholar 

  • Smythe WR (1968) Static and dynamic electricity’, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38(4):591–603

    Article  Google Scholar 

  • Tropp J (1989) Theory of birdcage resonator. J Magn Res 82:51–62

    Google Scholar 

  • Tropp J (1997) Mutual inductence in the birdcage resonator. J Magn Res 126:9–17

    Article  Google Scholar 

  • Ullmann P, Junge S, Wick M, Seifert F, Ruhm W, Hennig J (2005) Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels. Magn Reson Med 54:994–1001

    Article  Google Scholar 

  • Vaughan JT, Griffiths JR (2012) RF coils for MRI. Wiley, Chichester

    Google Scholar 

  • Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost GM (1994) High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 32:206–218

    Article  Google Scholar 

  • Wiesinger F, Boesiger P, Pruessmann KP (2004) Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 2(2):376–390

    Article  Google Scholar 

  • Wiesinger F, DeZanche N, Pruessmann KP (2005) Approaching ultimate SNR with finite coil arrays. In: Proceedings of the ISMRM, 2005. Miami, FL

    Google Scholar 

  • Wiggins G et al (2005) A 96-channel MRI System with 23- and 90-channel Phase Array Head Coils at 1.5 Tesla. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol 13

    Google Scholar 

  • Wong WH (2001) US Patent 6,285,189

    Google Scholar 

  • Zeeman P (1882) Ueber einen Einfluss der Magnetisirung auf die Natur des von einer Substanz emittierten Lichtes, Verhandlungen der Physikalischen Gesellschaft zu Berlin, S. 127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Junge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Junge, S. (2016). Antennas in MRI Systems. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_121

Download citation

Publish with us

Policies and ethics