Skip to main content
Log in

Analysis of the SABRE (Signal Amplification by Reversible Exchange) Effect at High Magnetic Fields

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A detailed study of the Signal Amplification By Reversible Exchange (SABRE) effect at high magnetic fields is performed. SABRE is formed by spin order transfer from parahydrogen to a substrate in a transient organometallic complex. Typically, such a transfer is efficient at low magnetic fields; at high fields it requires radio-frequency (RF) excitation of spins in the SABRE complex. However, recently it has been shown (Barskiy et al. in J. Am. Chem. Soc. 136:3322–3325, 2014) that high-field SABRE is also feasible due to “spontaneous” spin order transfer (i.e., transfer in the absence of RF excitation) although the transfer efficiency is low. Here, we studied the SABRE field dependence for protons in the field range 1.0–16.4 T and found an increase of polarization with the field; further optimization of proton polarization can be achieved by varying the viscosity of the solvent. As previously, polarization transfer is attributed to cross-relaxation; this conclusion is supported by additional experiments. For spin-½ hetero-nuclei, such as 15N and 31P, spontaneous spin order transfer is also feasible; however, in contrast to protons, it is based on a coherent mechanism. Consequently, higher transfer efficiency is achieved; moreover the 15N and 31P spectral patterns are remarkably different from that for protons: multiplet (anti-phase) polarization is seen for hetero-nuclei. Our study is of importance for enhancing weak nuclear magnetic resonance (NMR) signals by exploiting non-thermally polarized spins. Although the efficiency of high-field SABRE is lower than that of low-field SABRE; the high-field SABRE experiment is easy to implement for improving the sensitivity of NMR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. López-Serrano, D.C. Williamson, Science 323, 1708 (2009)

    Article  ADS  Google Scholar 

  2. R.E. Mewis, Magn. Reson. Chem. 53, 789 (2015)

    Article  Google Scholar 

  3. J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997)

    Article  Google Scholar 

  4. R.A. Green, R.W. Adams, S.B. Duckett, R.E. Mewis, D.C. Williamson, G.G.R. Green, Prog. Nucl. Magn. Reson. Spectrosc. 67, 1 (2012)

    Article  Google Scholar 

  5. J.-B. Hövener, N. Schwaderlapp, T. Lickert, S.B. Duckett, R.E. Mewis, L.A.R. Highton, S.M. Kenny, G.G.R. Green, D. Leibfritz, J.G. Korvink, J. Hennig, D. von Elverfeldt, Nature Commun. 4, 2946 (2013)

    Article  Google Scholar 

  6. A.N. Pravdivtsev, A.V. Yurkovskaya, H.-M. Vieth, K.L. Ivanov, J. Phys. Chem. B 119, 13619 (2015)

    Article  Google Scholar 

  7. A.N. Pravdivtsev, A.V. Yurkovskaya, H. Zimmermann, H.-M. Vieth, K.L. Ivanov, RSC Adv. 5, 63615 (2015)

    Article  Google Scholar 

  8. N. Eshuis, R.L.E.G. Aspers, B.J.A. van Weerdenburg, M.C. Feiters, F.P.J.T. Rutjes, S.S. Wijmenga, M. Tessari, Angew. Chem. Intl. Ed. 54, 14527 (2015)

    Article  Google Scholar 

  9. V. Daniele, F.-X. Legrand, P. Berthault, J.-N. Dumez, G. Huber, Chem. Phys. Chem. 16, 3413 (2015)

    Google Scholar 

  10. T. Ratajczyk, T. Gutmann, P. Bernatowicz, G. Buntkowsky, J. Frydel, B. Fedorczyk, Chem. Eur. J. 21, 12616 (2015)

    Article  Google Scholar 

  11. L.S. Lloyd, R.W. Adams, M. Bernstein, S. Coombes, S.B. Duckett, G.G.R. Green, R.J. Lewis, R.E. Mewis, C.J. Sleigh, J. Am. Chem. Soc. 134, 12904 (2012)

    Article  Google Scholar 

  12. N. Eshuis, N. Hermkens, B.J.A. van Weerdenburg, M.C. Feiters, F.P.J.T. Rutjes, S.S. Wijmenga, M. Tessari, J. Am. Chem. Soc. 136, 2695 (2014)

    Article  Google Scholar 

  13. T. Theis, M.L. Truong, A.M. Coffey, R.V. Shchepin, K.W. Waddell, F. Shi, B.M. Goodson, W.S. Warren, E.Y. Chekmenev, J. Am. Chem. Soc. 137, 1404–1407 (2015)

    Article  Google Scholar 

  14. K.X. Moreno, K. Nasr, M. Milne, A.D. Sherry, W.J. Goux, J. Magn. Reson. 257, 15 (2015)

    Article  ADS  Google Scholar 

  15. H. Zeng, J. Xu, J. Gillen, M.T. McMahon, D. Artemov, J.-M. Tyburn, J.A.B. Lohman, R.E. Mewis, K.D. Atkinson, G.G.R. Green, S.B. Duckett, P.C.M. van Zijl, J. Magn. Reson. 237, 73 (2013)

    Article  ADS  Google Scholar 

  16. M.J. Burns, P.J. Rayner, G.G.R. Green, L.A.R. Highton, R.E. Mewis, S.B. Duckett, J. Phys. Chem. B 119, 5020 (2015)

    Article  Google Scholar 

  17. D.A. Barskiy, K.V. Kovtunov, I.V. Koptyug, P. He, K.A. Groome, Q.A. Best, F. Shi, B.M. Goodson, R.V. Shchepin, M.L. Truong, A.M. Coffey, K.W. Waddell, E.Y. Chekmenev, Chem. Phys. Chem. 15, 4100 (2014)

    Google Scholar 

  18. E.B. Dücker, L.T. Kuhn, K. Münnemann, C. Griesinger, J. Magn. Reson. 214, 159 (2012)

    Article  ADS  Google Scholar 

  19. A.N. Pravdivtsev, A.V. Yurkovskaya, H.-M. Vieth, K.L. Ivanov, R. Kaptein, Chem. Phys. Chem. 14, 3327 (2013)

    Google Scholar 

  20. R.W. Adams, S.B. Duckett, R.A. Green, D.C. Williamson, G.G.R. Green, J. Chem. Phys. 131, 194505 (2009)

    Article  ADS  Google Scholar 

  21. A.N. Pravdivtsev, K.L. Ivanov, A.V. Yurkovskaya, P.A. Petrov, R. Kaptein, H.-H. Limbach, H.-M. Vieth, J. Magn. Reson. 261, 73 (2015)

    Article  ADS  Google Scholar 

  22. A.N. Pravdivtsev, A.V. Yurkovskaya, H.-M. Vieth, K.L. Ivanov, Phys. Chem. Chem. Phys. 16, 24672 (2014)

    Article  Google Scholar 

  23. T. Theis, M. Truong, A.M. Coffey, E.Y. Chekmenev, W.S. Warren, J. Magn. Reson. 248, 23 (2014)

    Article  ADS  Google Scholar 

  24. D.A. Barskiy, K.V. Kovtunov, I.V. Koptyug, P. He, K.A. Groome, Q.A. Best, F. Shi, B.M. Goodson, R.V. Shchepin, A.M. Coffey, K.W. Waddell, E.Y. Chekmenev, J. Am. Chem. Soc. 136, 3322 (2014)

    Article  Google Scholar 

  25. M.L. Truong, F. Shi, P. He, B. Yuan, K.N. Plunkett, A.M. Coffey, R.V. Shchepin, D.A. Barskiy, K.V. Kovtunov, I.V. Koptyug, K.W. Waddell, B.M. Goodson, E.Y. Chekmenev, J. Phys. Chem. B 118, 13882 (2014)

    Article  Google Scholar 

  26. M.J. Cowley, R.W. Adams, K.D. Atkinson, M.C.R. Cockett, S.B. Duckett, G.G.R. Green, J.A.B. Lohman, R. Kerssebaum, D. Kilgour, R.E. Mewis, J. Am. Chem. Soc. 133, 6134 (2011)

    Article  Google Scholar 

  27. K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, J. López-Serrano, A.C. Whitwood, J. Am. Chem. Soc. 131, 13362 (2009)

    Article  Google Scholar 

  28. I. Kownacki, M. Kubicki, K. Szubert, B. Marciniec, J. Organomet. Chem. 693, 321 (2008)

    Article  Google Scholar 

  29. A.S. Kiryutin, A.N. Pravdivtsev, K.L. Ivanov, Y.A. Grishin, H.-M. Vieth, A.V. Yurkovskaya, J. Magn. Reson. 263, 79 (2016)

    Article  ADS  Google Scholar 

  30. J. Kowalewski, L. Mäler, in Series in Chemical Physics, ed. by H.J. Moore, N.D. Spencer (CRC Press Taylor & Francis Group, Boca Raton, 2006), vol. 2, p. 426

  31. S. Aime, R. Gobetto, F. Reineri, D. Canet, J. Magn. Reson. 178, 184 (2006)

    Article  ADS  Google Scholar 

  32. K.L. Ivanov, A.V. Yurkovskaya, H.-M. Vieth, Z. Phys, Chem. 226, 1315 (2012)

    Google Scholar 

  33. A.N. Pravdivtsev, K.L. Ivanov, A.V. Yurkovskaya, H.-M. Vieth, R.Z. Sagdeev, Dokl. Phys. Chem. 464, 247 (2015)

    Article  Google Scholar 

  34. J.-K. Vollenweider, H. Fischer, Chem. Phys. 108, 365 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by the Russian Science Foundation (Grant No. 14-13-01053). The basic funding of ITC was provided by the Federal Agency of Scientific Organizations, Russia. We are thankful to Prof. Leonid Kulik (Institute of Chemical Kinetics and Combustion, Novosibirsk) for providing deuterated glycerol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin L. Ivanov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravdivtsev, A.N., Yurkovskaya, A.V., Petrov, P.A. et al. Analysis of the SABRE (Signal Amplification by Reversible Exchange) Effect at High Magnetic Fields. Appl Magn Reson 47, 711–725 (2016). https://doi.org/10.1007/s00723-016-0771-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0771-y

Keywords

Navigation