Skip to main content
Log in

Design and simulation of a dual-tuned 1H/23Na birdcage coil for MRS studies in human calf

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Sodium magnetic resonance is a very promising tool for achieving biochemical information on tissue viability, cell integrity and function in quantitative and noninvasive manner. Although it has already been applied in vivo in most human tissues, the low detectable sodium signal gives rise to technological limitations in terms of data quality when using clinical scanners. The design of dedicated coils capable of providing large field of view with high signal-to-noise ratio data is a requirement for quantifying tissutal sodium. This work describes design, simulation, construction and test of a dual-tuned 1H/23Na birdcage coil for magnetic resonance (MR) studies in human calf performed with a 3-T MR scanner. Coil simulation was performed using an electromagnetic solver based on finite-difference time-domain (FDTD) method, while the design included matching, tuning and trap circuits’ realization for 1H/23Na decoupling. Successively, a prototype of the coil was built and tested at workbench, for quality factors, Q ratio measurements and 1H/23Na channels’ decoupling evaluation. Finally, the coil was employed in a 3-Tesla scanner for acquiring MR data. The results are presented as signal profiles for both coil channels extracted from the phantom chemical shift image and with in vivo imaging performed on human calfs. The designed dual-tuned coil provided good decoupling between H and Na channels, by permitting to maximize the homogeneity of the magnetic field at both the frequencies of interest. Moreover, the simulations accuracy was demonstrated by good agreement between the theoretical and experimental coil signal profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.J.C. Berendsen, H.T. Edzes, Ann. N. Y. Acad. Sci. 204, 459 (1973)

    Article  ADS  Google Scholar 

  2. J.A. Magnuson, N.S. Magnuson, Ann. N. Y. Acad. Sci. 204, 297 (1973)

    Article  ADS  Google Scholar 

  3. D.A. Feinberg, L.A. Crooks, L. Kaufman, M. Brant-Zawadzki, J.P. Posin, M. Arakawa, J.C. Watts, J. Hoenninger, Radiology 156, 133 (1985)

    Article  Google Scholar 

  4. A.A. Maudsley, S.K. Hilal, Br. Med. Bull. 40, 165 (1984)

    Google Scholar 

  5. M.E. Moseley, W.M. Chew, M.C. Nishimura, T.L. Richards, J. Murphy-Boesch, G.B. Young, T.M. Marschner, L.H. Pitts, T.L. James, Magn. Reson. Imaging 3, 383 (1985)

    Article  Google Scholar 

  6. R. Ouwerkerk, M.A. Jacobs, K.J. Macura, A.C. Wolff, V. Stearns, S.D. Mezban, N.F. Khouri, D.A. Bluemke, P.A. Bottomley, Breast Cancer Res. Treat. 106, 151 (2007)

    Article  Google Scholar 

  7. P.A. Bottomley, eMagRes. 1(2), (2012). doi:10.1002/9780470034590.emrstm1252

  8. G. Madelin, R.R. Regatte, J. Magn. Reson. Imaging 38, 511 (2013)

    Article  Google Scholar 

  9. G. Madelin, R. Kline, R. Walvick, R.R. Regatte, Sci. Rep. 4, 4763 (2014)

    Article  ADS  Google Scholar 

  10. R.W. Stobbe, C. Beaulieu, MAGMA 27, 21 (2014)

    Article  Google Scholar 

  11. G. Giovannetti, A. Pingitore, V. Positano, D. De Marchi, G. Valvano, F. Gibiino, G.D. Aquaro, M. Lombardi, L. Landini, M.F. Santarelli, Measurement 50, 285 (2014)

    Article  Google Scholar 

  12. T.N.A. Graessl, A. Ruehle, W. Renz, L. Winter, H. Pfeiffer, J. Ruff, J. Rieger, J. Cardiovasc. Magn. Reson. 15, W14 (2013)

    Google Scholar 

  13. R. Brown, G. Madelin, R. Lattanzi, G. Chang, R.R. Regatte, D.K. Sodickson, G.C. Wiggins, Magn. Reson. Med. 70, 259 (2013)

    Article  Google Scholar 

  14. F. Wetterling, M. Högler, U. Molkenthin, S. Junge, L. Gallagher, I.M. Macrae, A.J. Fagan, J. Magn. Reson. 217, 10 (2012)

    Article  ADS  Google Scholar 

  15. J.D. Kaggie, J.R. Hadley, J. Badal, J.R. Campbell, D.J. Park, D.L. Parker, G. Morrell, R.D. Newbould, A.F. Wood, N.K. Bangerter, Magn. Reson. Med. 71, 2231 (2014)

    Article  Google Scholar 

  16. J.-H. Kim, C.H. Moon, B.-W. Park, A. Furlan, T. Zhao, K.T. Bae, Magn. Reson. Imaging 30, 562 (2012)

    Article  Google Scholar 

  17. C.E. Hayes, W.A. Edelstein, J.F. Schenck, O.M. Mueller, M. Eash 628, 622 (1985)

    Google Scholar 

  18. G. Isaac, M.D. Schnall, J. Magn. Reson. 89, 41 (1990)

    ADS  Google Scholar 

  19. J. Murphy-Boesch, R. Srinivasan, L. Carvajal, T.R. Brown, J. Magn. Reson. B 103, 103 (1994)

    Article  Google Scholar 

  20. J. Murphy-Boesch, eMagRes. 1–7 (2011). doi:10.1002/9780470034590.emrstm1121

  21. Y. Duan, B.S. Peterson, F. Liu, T.R. Brown, T.S. Ibrahim, A. Kangarlu, J. Magn. Reson. Imaging 29, 13 (2009)

    Article  Google Scholar 

  22. G.B. Matson, P. Vermathen, T.C. Hill, Magn. Reson. Med. 42, 173 (1999)

    Article  Google Scholar 

  23. B. Tomanek, V. Volotovskyy, M.L.H. Gruwel, E. McKenzie, S.B. King, Concepts Magn. Reson. Part B Magn. Reson. Eng. 26B, 16 (2005)

    Article  Google Scholar 

  24. G. Giovannetti, V. Viti, V. Positano, M.F. Santarelli, L. Landini, A. Benassi, Concepts Magn. Reson. Part B Magn. Reson. Eng. 31B, 140 (2007)

    Article  Google Scholar 

  25. M.S. Morelli, V. Hartwig, S. Tassano, N. Vanello, V. Positano, M.F. Santarelli, A. Carrozzi, L. Landini, G. Giovannetti, Appl. Magn. Reson. 44, 1393 (2013)

    Article  Google Scholar 

  26. G. Giovannetti, V. Hartwig, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 39, 391 (2010)

    Article  Google Scholar 

  27. J.-P. Berenger, J. Comput. Phys. 114, 185 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. G. Giovannetti, L. Landini, M.F. Santarelli, V. Positano, MAGMA 15, 36 (2002)

    Article  Google Scholar 

  29. J. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging (CRC Press, Boca Ratan, 1998)

    Google Scholar 

  30. W.A. Edelstein, G.H. Glover, C.J. Hardy, R.W. Redington, Magn. Reson. Med. 3, 604 (1986)

    Article  Google Scholar 

  31. K. Golman, J.S. Petersson, Acad. Radiol. 13, 932 (2006)

    Article  Google Scholar 

  32. G. Giovannetti, R. Francesconi, L. Landini, V. Viti, M.F. Santarelli, V. Positano, A. Benassi, Concepts Magn. Reson. 22B, 1 (2004)

    Article  Google Scholar 

  33. G. Giovannetti, R. Francesconi, L. Landini, M.F. Santarelli, V. Positano, V. Viti, A. Benassi, Concepts Magn. Reson. 20B, 9 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Giovannetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovannetti, G., Valvano, G., Virgili, G. et al. Design and simulation of a dual-tuned 1H/23Na birdcage coil for MRS studies in human calf. Appl Magn Reson 46, 1221–1238 (2015). https://doi.org/10.1007/s00723-015-0720-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0720-1

Keywords

Navigation