Skip to main content
Log in

Orientation Information from the Dipolar Interaction Between a Complex in the Excited Quartet State and a Doublet Spin Label

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An algorithm is proposed for deriving the position of a stable radical relative to a photoexcited quartet state from the electron spin–spin interactions measured by double resonance methods. Intersystem crossing generates multiplet polarization in the quartet state and microwave excitation of the ±3/2 ↔ ±1/2 transitions converts the multiplet polarization into net polarization of the ±1/2 levels. The dependence of the electron spin echo envelope modulation (ESEEM) of the +1/2 ↔ −1/2 transition on the field/frequency of the stimulation pulse is demonstrated. The algorithm is tested by comparing the predicted ESEEM patterns to those from explicit numerical calculations of the spin evolution (so-called numerical experiments), which act as a model for experiment results. The comparison demonstrates that within the point-dipole approximation it is feasible to obtain not only the distance between the two paramagnetic centers but also the orientation of the distance vector relative to the principal axes of the quartet state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.L. Hubbell, C. Altenbach, Curr. Opin. Struc. Biol. 4, 566–573 (1994)

    Article  Google Scholar 

  2. G. Jeschke, Y. Polyhach, Phys. Chem. Chem. Phys. 9, 1895–1910 (2007)

    Article  Google Scholar 

  3. J.P. Klare, H.J. Steinhoff, Photosynth. Res. 102, 377–390 (2009)

    Article  Google Scholar 

  4. O. Schiemann, T.F. Prisner, Q. Rev. Biophys. 40, 1–53 (2007)

    Article  Google Scholar 

  5. R.G. Larsen, D.J. Singel, J. Chem. Phys. 98, 5134–5146 (1993)

    Article  ADS  Google Scholar 

  6. A.D. Milov, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 15, 107–143 (1998)

    Article  Google Scholar 

  7. A.D. Milov, A.B. Ponomarev, Y.D. Tsvetkov, Chem. Phys. Lett. 110, 67–72 (1984)

    Article  ADS  Google Scholar 

  8. A.D. Milov, K.M. Salikhov, M.D. Shchirov, Fiz. Tverd. Tela 23, 957–982 (1981)

    Google Scholar 

  9. A.M. Raitsimring, K.M. Salikhov, Bull. Magn. Reson. 7, 1184–1217 (1985)

    Google Scholar 

  10. L.V. Kulik, S.A. Dzuba, I.A. Grigoryev, Y.D. Tsvetkov, Chem. Phys. Lett. 343, 315–324 (2001)

    Article  ADS  Google Scholar 

  11. S. Milikisyants, F. Scarpelli, M.G. Finiguerra, M. Ubbink, M. Huber, J. Magn. Reson. 201, 48–56 (2009)

    Article  ADS  Google Scholar 

  12. V.V. Kurshev, A.V. Astashkin, A.M. Raitsimring, J. Struct. Chem. 29, 62–68 (1988)

    Article  Google Scholar 

  13. S. Saxena, J.H. Freed, Chem. Phys. Lett. 251, 102–110 (1996)

    Article  ADS  Google Scholar 

  14. V.P. Denysenkov, D. Biglino, W. Lubitz, T.F. Prisner, M. Bennati, Angew. Chemie 47, 1224–1227 (2008)

    Article  Google Scholar 

  15. V.P. Denysenkov, T.F. Prisner, J. Stubbe, M. Bennati, Proc. Natl. Acad. Sci. USA 103, 13386–13390 (2006)

    Article  ADS  Google Scholar 

  16. M.M. Hertel, V.P. Denysenkov, M. Bennati, T.F. Prisner, Magn. Reson. Chem. 43, S248–S255 (2005)

    Article  Google Scholar 

  17. J.E. Lovett, A.M. Bowen, C.R. Timmel, M.W. Jones, J.R. Dilworth, D. Caprotti, S.G. Bell, L.L. Wong, J. Harmer, Phys. Chem. Chem. Phys. 11, 6840–6848 (2009)

    Article  Google Scholar 

  18. D. Margraf, B.E. Bode, A. Marko, O. Schiemann, T.F. Prisner, Mol. Phys. 105, 2153–2160 (2007)

    Article  ADS  Google Scholar 

  19. A.G. Maryasov, Y.D. Tsvetkov, J. Raap, Appl. Magn. Reson. 14, 101–113 (1998)

    Article  Google Scholar 

  20. Y. Polyhach, A. Godt, C. Bauer, G. Jeschke, J. Magn. Reson. 185, 118–129 (2007)

    Article  ADS  Google Scholar 

  21. A. Savitsky, A.A. Dubinskii, M. Flores, W. Lubitz, K. Mobius, J. Phys. Chem. B 111, 6245–6262 (2007)

    Article  Google Scholar 

  22. I. Kaminker, I. Tkach, N. Manukovsky, T. Huber, H. Yagi, G. Otting, M. Bennati, D. Goldfarb, J. Magn. Reson. 227, 66–71 (2013)

    Article  ADS  Google Scholar 

  23. Y.E. Kandrashkin, A. van der Est, Appl. Magn. Reson. 40, 189–204 (2011)

    Article  Google Scholar 

  24. K. Ishii, J. Fujisawa, Y. Ohba, S. Yamauchi, J. Am. Chem. Soc. 118, 13079–13080 (1996)

    Article  Google Scholar 

  25. K. Ishii, T. Ishizaki, N. Kobayashi, J. Chem. Soc.-Dalton Trans., 3227–3231 (2001)

  26. K. Ishii, S. Takeuchi, N. Kobayashi, J. Phys. Chem. A 105, 6794–6799 (2001)

    Article  Google Scholar 

  27. Y. Kandrashkin, M.S. Asano, A. van der Est, Phys. Chem. Chem. Phys. 8, 2129–2132 (2006)

    Article  Google Scholar 

  28. Y.E. Kandrashkin, M.S. Asano, A. van der Est, J. Phys. Chem. A 110, 9607–9616 (2006)

    Article  Google Scholar 

  29. Y.E. Kandrashkin, M.S. Asano, A. van der Est, J. Phys. Chem. A 110, 9617–9626 (2006)

    Article  Google Scholar 

  30. Y. Teki, M. Kimura, S. Narimatsu, K. Ohara, K. Mukai, Bull. Chem. Soc. Jpn. 77, 95–99 (2004)

    Article  Google Scholar 

  31. Y. Teki, M. Nakatsuji, Y. Miura, Int. J. Mod. Phys. B 15, 4029–4031 (2001)

    Article  ADS  Google Scholar 

  32. R.L. Ake, M. Gouterman, Theor. Chim. Acta 15, 20–42 (1969)

    Article  Google Scholar 

  33. Y. Kandrashkin, A. van der Est, J. Chem. Phys. 120, 4790–4799 (2004)

    Article  ADS  Google Scholar 

  34. Y.E. Kandrashkin, A. van der Est, Appl. Magn. Reson. 40, 189–204 (2011)

    Article  Google Scholar 

  35. S.N. Trukhan, V.F. Yudanov, V.M. Tormyshev, O.Y. Rogozhnikova, D.V. Trukhin, M.K. Bowman, M.D. Krzyaniak, H. Chen, O.N. Martyanov, J. Magn. Reson. 233, 29–36 (2013)

    Article  ADS  Google Scholar 

  36. A. van der Est, M. Asano-Someda, P. Ragogna, Y. Kaizu, J. Phys. Chem. A 106, 8531–8542 (2002)

    Article  Google Scholar 

  37. G.E. Pake, J. Chem. Phys. 16, 327–336 (1948)

    Article  ADS  Google Scholar 

  38. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)

    Article  Google Scholar 

  39. P.K. Poddutoori, M. Pilkington, A. Alberola, V. Polo, J.E. Warren, A. van der Est, Inorg. Chem. 49, 3516–3524 (2010)

    Article  Google Scholar 

  40. G. Jeschke, H.W. Spiess, Lect. Notes Phys. 684, 21–63 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Sciences and Engineering Research Council, Canada, and by the Russian Foundation for Basic Research (project no. 12-03-97078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuri E. Kandrashkin or Art van der Est.

Appendix

Appendix

In the following we calculate analytical expressions for the ESEEM curves of the weakly coupled quartet–doublet system. We assume that the detection pulses excite the +1/2 ↔ −1/2 transitions of both the quartet and the doublet spins and we neglect the influence of the MW field on the transitions +3/2 ↔ +1/2 and −3/2 ↔ −1/2 of the quartet state. In the case of no initial coherence, the spin echo depends only on the differences of the populations of the sublevels ±1/2

$$ \begin{gathered} \rho_{Q} = n_{Q} (\left| {Q, + 1/2} \right\rangle \left\langle {Q, + 1/2} \right| - \left| {Q, - 1/2} \right\rangle \left\langle {Q, - 1/2} \right|), \hfill \\ \rho_{R} = n_{R} (\left| {R, + 1/2} \right\rangle \left\langle {R, + 1/2} \right| - \left| {R, - 1/2} \right\rangle \left\langle {R, - 1/2} \right|). \hfill \\ \end{gathered} $$
(27)

In the simple case of weak dipolar interactions between two spins the evolution of the spin system is described by the static spin Hamiltonian:

$$ \begin{gathered} H = \omega_{Q} S_{Q,z} + \omega_{R} S_{R,z} + 2{\text{d}}S_{Q,z} S_{R,z}, \hfill \\ u_{0} (t) = \exp ( - iHt). \hfill \\ \end{gathered} $$
(28)

Here we ignore ZFS of the quartet state because it does not affect the results under the approximation used. The ESE signal is computed as:

$$ \begin{gathered} I = Tr(S_{y} u(\rho_{Q} + \rho_{R} )u^{\dag } ), \hfill \\ u_{0} = u_{0} (t)p_{2} u_{0} (\tau )p_{1}, \hfill \\ \end{gathered} $$
(29)

where p 1 and p 2 describe the pulses and depend on the applied pulse sequence. In the following, we will neglect those terms in the solution of (29) that depend on the Larmor frequencies ω Q or ω R at time t = τ. The solutions of Eqs. (29) for the four pulse sequences labeled as A, B, C, and R described in the main text [Eqs. (16) and (25)] are:

1. Pulse sequence A [Eq. (16)]

The pulses p 1 and p 2 of pulse sequence A are defined according to Eqs. (12), (14) and (15) as:

$$ \begin{gathered} p_{1} = p_{\text{c}} (\pi /2), \hfill \\ p_{2} = p_{\text{c}} (\pi ). \hfill \\ \end{gathered} $$
(30)

The ESE signal computed according to Eq. (29) gives:

$$ I_{\text{A}} = n_{Q} \cos {\text{d}}(\tau + t)\cos \omega_{Q} (\tau - t)/6. $$
(31)

2. Pulse sequence B [Eq. (16)]

The pulses p 1 and p 2 of pulse sequence B are defined according to Eqs. (12) and (14) as:

$$ \begin{gathered} p_{1} = p_{\text{c}} (\pi /2), \hfill \\ p_{2} = p_{y} (\pi /2), \hfill \\ \end{gathered} $$
(32)
$$ I_{\text{B}} = n_{Q} \cos {\text{d}}\tau \cos {\text{d}}t\cos \omega_{Q} (\tau - t)/6. $$
(33)

3. Pulse sequence C [Eq. (16)]

The pulses p 1 and p 2 of pulse sequence C are defined according to Eq. (12) and are used to detect the primary spin echo predominantly from spin Q:

$$ \begin{gathered} p_{1} = p_{x} (\pi /4), \hfill \\ p_{2} = p_{y} (\pi /2), \hfill \\ \end{gathered} $$
(34)
$$ \begin{gathered} I_{C} = - n_{Q} \cos {\text{d}}\tau \cos {\text{d}}t\cos \omega_{Q} (t - \tau )/6 \\ - n_{R} (\cos {\text{d}}(t + \tau ) + \cos 3{\text{d}}(t - \tau ))\cos \omega_{R} (t - \tau )/24\sqrt 2 .\\ \end{gathered} $$
(35)

4. Pulse sequence [Eq. (25)]

The pulses p 1 and p 2 of this pulse sequence are defined according to Eq. (12) and are used to detect primary spin echo from spin R:

$$ \begin{gathered} p_{1} = p_{x} (\pi /2), \hfill \\ p_{2} = p_{x} (\pi /4)p_{y} (\pi /4), \hfill \\ \end{gathered} $$
(36)
$$ I_{R} = - n_{R} \left( {\cos {\text{d}}(t + \tau ) + \cos 3{\text{d}}(t - \tau )} \right)\cos \omega_{R} (t - \tau )/12. $$
(37)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandrashkin, Y.E., van der Est, A. Orientation Information from the Dipolar Interaction Between a Complex in the Excited Quartet State and a Doublet Spin Label. Appl Magn Reson 45, 217–237 (2014). https://doi.org/10.1007/s00723-014-0516-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0516-8

Keywords

Navigation